login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103873
Numbers k such that 2*P(k) + 3, 2*P(k+1) + 5, 2*P(k+2) + 7, 2*P(k+3) + 9 are also consecutive primes where P(i) = i-th prime.
2
79432, 100888, 114226, 188044, 309091, 311682, 368760, 503386, 672506, 819256, 1036976, 1127567, 1201734, 1278446, 1430321, 1586850, 1611779, 1692295, 1782769, 2176459, 2351364, 2647632, 2750942, 2914915, 3005743, 3091827, 3249605, 3444784, 3754007, 4018023
OFFSET
1,1
MATHEMATICA
cpQ[{a_, b_, c_, d_}]:=AllTrue[{2a+3, 2b+5, 2c+7, 2d+9}, PrimeQ] && NextPrime[ 2a+3] == 2b+5 && NextPrime[ 2b+5] == 2c+7 && NextPrime[ 2c+7] == 2d+9; PrimePi/@ Transpose[Select[ Partition[Prime[Range[ 1100000]], 4, 1], cpQ]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 14 2015 *)
PROG
(PARI) lista(nn) = {my(k=1, v=[2, 3, 5, 7]); forprime(p=11, nn, k++; v=concat(v[2..4], p); if(ispseudoprime(2*v[1]+3) && nextprime(2*v[1]+4)==2*v[2]+5 && nextprime(2*v[2]+6)==2*v[3]+7 && nextprime(2*v[3]+8)==2*v[4]+9, print1(k, ", "))); } \\ Jinyuan Wang, Mar 05 2020
CROSSREFS
Sequence in context: A157661 A159713 A251208 * A252292 A238177 A237172
KEYWORD
nonn
AUTHOR
Pierre CAMI, Feb 19 2005
EXTENSIONS
More terms from Harvey P. Dale, Aug 14 2015
STATUS
approved