Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 14 2020 12:23:37
%S 1,1,3,9,25,69,189,519,1428,3930,10812,29742,81816,225070,619156,
%T 1703262,4685565,12889687,35458707,97544655,268339161,738183999,
%U 2030697309,5586319365,15367609920,42275319276,116296719448
%N Row sums of square of trinomial triangle A071675.
%H G. C. Greubel, <a href="/A103780/b103780.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,4,6,8,8,6,3,1).
%F G.f.: 1/(1-x-2*x^2-4*x^3-6*x^4-8*x^5-8*x^6-6*x^7-3*x^8-x^9).
%F a(n) = a(n-1) +2a(n-2) +4a(n-3) +6a(n-4) +8a(n-5) +8a(n-6) +6a(n-7) +3a(n-8) +a(n-9).
%t CoefficientList[Series[1/(1 - x - 2*x^2 - 4*x^3 - 6*x^4 - 8*x^5 - 8*x^6 - 6*x^7 - 3*x^8 - x^9), {x,0,50}], x] (* _G. C. Greubel_, Mar 03 2017 *)
%t LinearRecurrence[{1,2,4,6,8,8,6,3,1},{1,1,3,9,25,69,189,519,1428},40] (* _Harvey P. Dale_, Jun 14 2020 *)
%o (Maxima)
%o a(n):=sum(sum((sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j),j,0,k)) *sum(binomial(j,-3*m+k+2*j)*binomial(m,j),j,0,m),k,m,n),m,0,n); /* Vladimir Kruchinin, Dec 01 2011 */
%o (PARI) x='x+O('x^50); Vec(1/(1 -x -2*x^2 -4*x^3 -6*x^4 -8*x^5 -8*x^6 -6*x^7 -3*x^8 -x^9)) \\ _G. C. Greubel_, Mar 03 2017
%K easy,nonn
%O 0,3
%A _Paul Barry_, Feb 15 2005