Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 02 2018 02:46:44
%S 0,2,4,6,8,10,3,2,5,4,7,6,9,8,11,10,3,3,3,2,5,5,5,4,7,7,7,6,9,9,9,8,
%T 11,11,11,10,3,3,3,3,3,3,3,2,5,5,5,5,5,5,5,4,7,7,7,7,7,7,7,6,9,9,9,9,
%U 9,9,9,8,11,11,11,11,11,11,11,10,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,5,5,5,5,5,5
%N Add 2 to each of the preceding digits, beginning with 0.
%C A000225 is hidden here. The sequence shows increasing cycles of the ten digits 1,0,3,2,5,4,7,6,9,8 where the odd digits are repeated while the evens not. The second cycle is 11,10,3,3,3,2,5,5,5,4,7,7,7,6,9,9,9,8 (= three times the same odd digit); the third one shows seven same odd digit... Thus the number of repeating odd digits in the first cycles are: 1, 3, 7, 15, 31, 63, 127, ... which is the sequence A000225. - _Alexandre Wajnberg_, Feb 16 2005
%C A020714 is also hidden here: the total number of digits increasingly repeated of each of the cycles are: 5 (the first five digits), 10, 20, 40, 80, 160, 320, ... which is A020714. - _Alexandre Wajnberg_, Feb 16 2005
%H Robert Israel, <a href="/A103694/b103694.txt">Table of n, a(n) for n = 0..10000</a>
%F From _Robert Israel_, Oct 11 2016: (Start)
%F For 6 <= m <= 10 and k >= 1, a(m*2^k-5) = 2*m-10.
%F For 5 <= m <= 9, k >= 1 and -4 <= j <= 2^k-6, a(m*2^k+j) = 2*m-7.
%F G.f.: (1-x)^(-1)*(2*(x+x^2+x^3+x^4)+3*x^5+Sum_{k>=1} ((-x-7)*x^(5*2^k-5)+Sum_{m=6..9} (-1+3*x)*x^(m*2^k-5))).
%F (End)
%p V:= Vector([0]): B:= Vector([0]): m:= 1:
%p for n from 2 to 200 do
%p V(n):= B[n-1] + 2;
%p if V[n] >= 10 then
%p B(m+1):= 1;
%p B(m+2):= V[n] mod 10;
%p m:= m+2;
%p else
%p B(m+1):= V[n];
%p m:= m+1;
%p fi
%p od:
%p convert(V,list); # _Robert Israel_, Oct 11 2016
%t Flatten[ NestList[ Function[x, Flatten[ IntegerDigits[x] + 2]], {0}, 22]]
%Y Cf. A102654, A103693, A103695, A103696, A103697, A103698, A103699, A103700.
%Y Cf. A000225, A020714.
%K base,nonn
%O 0,2
%A _Robert G. Wilson v_, Feb 12 2005