login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103614
Semiprimes of the form prime(n)*prime(n+1)*prime(n+2) - 1.
3
4198, 33262, 1564258, 6672202, 7566178, 18181978, 20193022, 178433278, 187466722, 229580146, 293158126, 467821918, 1125878062, 1341880018, 4317369778, 5198554618, 8493529942, 10138087306, 10594343758, 20940647698
OFFSET
1,1
COMMENTS
This is the three-consecutive-prime minus one equivalent of A103533, which is Giovanni Teofilatto's two-consecutive-prime minus one sequence.
EXAMPLE
n: prime(n) * prime(n+1) * prime(n+2) - 1
6: 13 *17 *19 - 1 = 4198 = 2 * 2099
10: 29 * 31 * 37 - 1 = 33262 = 2 * 16631
29: 109 * 113 * 127 - 1 = 1564258 = 2 * 782129
42: 181 * 191 * 193 -1 = 6672202 = 2 * 3336101
44: 193 * 197 * 199 -1 = 7566178 = 2 * 3783089
55: 257 * 263 * 269 -1 = 18181978 = 2 * 9090989
57: 269 * 271 * 277 -1 = 20193022 = 2 * 10096511
102: 557 * 563 * 569 -1 = 178433278 = 2 * 89216639
MATHEMATICA
Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Select[Table[Prime[n]*Prime[n+1]*Prime[n+2]-1, {n, 1000}], SemiprimeQ] (* Ray Chandler, Mar 29 2005 *)
PROG
(PARI) for(n=1, 420, if(bigomega(k=prime(n)*prime(n+1)*prime(n+2)-1)==2, print1(k, ", "))) (Brockhaus)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 24 2005
EXTENSIONS
Extended by Ray Chandler and Klaus Brockhaus, Mar 29 2005
STATUS
approved