login
A103577
Number of partitions of n into Fibonacci parts if each part is of two kinds.
1
1, 2, 5, 10, 18, 32, 53, 84, 132, 198, 294, 426, 606, 852, 1178, 1610, 2178, 2910, 3859, 5066, 6598, 8534, 10951, 13968, 17705, 22304, 27959, 34852, 43239, 53402, 65649, 80384, 98025, 119078, 144149, 173866, 209033, 250510, 299283, 356532, 423508
OFFSET
0,2
COMMENTS
Euler transform of 2 x the characteristic function of the Fibonacci numbers.
LINKS
FORMULA
G.f.=1/product((1-x^fibonacci(i))^2, i=2..infinity).
EXAMPLE
a(3)=10 because we have 3, 3', 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
MAPLE
N:= 12: # to get a(0)..a(M-1) where M = Fibonacci(N-1).
G:= mul(1/(1-x^combinat:-fibonacci(i))^2, i=2..N-1):
S:= series(G, x, combinat:-fibonacci(N)):
seq(coeff(S, x, j), j=0..combinat:-fibonacci(N)-1); # Robert Israel, Dec 01 2017
CROSSREFS
Sequence in context: A006327 A185721 A304796 * A326508 A079006 A001936
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 23 2005
STATUS
approved