login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103542
Binary equivalents of A102370.
5
0, 11, 110, 101, 100, 1111, 1010, 1001, 1000, 1011, 1110, 1101, 11100, 10111, 10010, 10001, 10000, 10011, 10110, 10101, 10100, 11111, 11010, 11001, 11000, 11011, 11110, 111101, 101100, 100111, 100010, 100001, 100000, 100011, 100110, 100101
OFFSET
0,2
COMMENTS
The number of 1's in the n-th term appears to match A089400. - Benoit Cloitre, Mar 24 2005
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
D. Applegate et al., Sloping Binary Number, A New Sequence Related to the Binary Numbers, arXiv:math/0505295 [math.NT], 2005.
MATHEMATICA
f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Table[ FromDigits[ IntegerDigits[f[n] + n, 2]], {n, 0, 35}] (* Robert G. Wilson v, Mar 23 2005 *)
PROG
(Python)
def a(n): return '0' if n<1 else bin(sum([(n + k)&(2**k) for k in range(len(bin(n)[2:]) + 1)]))[2:] # Indranil Ghosh, May 03 2017
CROSSREFS
Sequence in context: A169631 A308005 A280855 * A293871 A336880 A211968
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, Mar 23 2005
EXTENSIONS
More terms from Robert G. Wilson v and Benoit Cloitre, Mar 23 2005
STATUS
approved