The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103478 Positive integers k for which 1 + 5*2^(k+2) divides the Fermat number 1 + 2^2^k. 2
 5, 23, 73, 125, 1945, 23471 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS On Keller's linked page, to find the terms, you run through the tables and find all rows with k = 5 and with n exactly 2 greater than m, then that m belongs to this sequence. - Jeppe Stig Nielsen, Dec 04 2018 LINKS Table of n, a(n) for n=1..6. Wilfrid Keller, Prime factors k*2^n + 1 of Fermat numbers F_m EXAMPLE a(1)=5 because 5 is the smallest positive integer k for which 1 + 5*2^(k+2) divides the Fermat number 1 + 2^2^k. MATHEMATICA Select[Range[1, 2000], Mod[1 + PowerMod[2, 2^#, 1 + 5*2^(# + 2)], 1 + 5*2^(# + 2)] == 0 &] (* Julien Kluge, Jul 08 2016 *) PROG (PARI) isok(n) = Mod(2, 1+5*2^(n+2))^(2^n) + 1 == 0; \\ Michel Marcus, Apr 29 2016 CROSSREFS Cf. A000215, A083575, A103477, A103479. Sequence in context: A230497 A138905 A125955 * A327976 A121868 A111584 Adjacent sequences: A103475 A103476 A103477 * A103479 A103480 A103481 KEYWORD nonn,more,hard AUTHOR Serhat Sevki Dincer (mesti_mudam(AT)yahoo.com), Feb 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 14:39 EDT 2023. Contains 365826 sequences. (Running on oeis4.)