Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Sep 01 2024 02:33:02
%S 2,3,5,7,17,31,71,127,157,227,257,293,349,419,503,8179,65657,68053,
%T 72421,80429,258949,493109,16399511,33609887,34225183,1387603957,
%U 5575987679,15932884421,35689079297,693128029907,957136790429,1129233918343,10363690074667,41632551979939,10815125582078291
%N Primes in A103379.
%F Intersection of A103379 and A000040.
%e A103379(20) = 3, which is prime, hence 3 is in this sequence.
%p A103379 := proc(n) option remember ; if n <= 12 then 1; else procname(n-11)+procname(n-12) ; fi; end: isA103379 := proc(n) option remember ; local i ; for i from 1 do if A103379(i) = n then RETURN(true) ; elif A103379(i) > n then RETURN(false) ; fi; od: end: A103389 := proc(n) option remember ; local a; if n = 1 then 2; else for a from procname(n-1)+1 do if isprime(a) then if isA103379(a) then RETURN(a) ; fi; fi; od: fi; end: for n from 1 to 37 do printf("%d, ",A103389(n)) ; od: # _R. J. Mathar_, Aug 30 2008
%t Clear[a]; k11; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103389=Union[Select[Array[a, 1000], PrimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Program, edit and extension by _Ray Chandler_ and _Robert G. Wilson v_, irrelevant code deleted by _M. F. Hasler_, Sep 19 2015 *)
%t Select[LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,1,1},{1,1,1,1,1,1,1,1,1,1,1,1},700],PrimeQ]//Union (* _Harvey P. Dale_, Apr 22 2016 *)
%o (PARI) {a=vector(m=12,n,1);L=0;for(n=m,10^5,isprime(a[i=n%m+1]+=a[(n+1)%m+1])&&L<a[i]&&print1(L=a[i],","))} \\ _M. F. Hasler_, Sep 19 2015
%Y Cf. A103379, A103399.
%K easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Feb 15 2005
%E Corrected from a(16) on by _R. J. Mathar_, Aug 30 2008
%E Edited and more terms added by _M. F. Hasler_, Sep 19 2015