

A103330


Number of ways to place n+1 queens and a pawn on an n X n board so that no two queens attack each other.


1



0, 0, 0, 0, 0, 16, 20, 128, 396, 2288, 11152, 65712, 437848, 3118664, 23387448, 183463680, 1474699536
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

Table of n, a(n) for n=1..17.
R. D. Chatham, The N+k Queens Problem Page.
R. D. Chatham, M. Doyle, G. H. Fricke, J. Reitmann, R. D. Skaggs and M. Wolff, Independence and Domination Separation in Chessboard Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.
R. D. Chatham, G. H. Fricke and R. D. Skaggs, The Queens Separation Problem, Utilitas Mathematica 69 (2006), 129141.


EXAMPLE

a(4) = 0 because when 5 queens are placed on a 4 X 4 board, at least 2 queens will be adjacent and therefore mutually attacking.


CROSSREFS

Cf. A000170 A103331.
Sequence in context: A260572 A240038 A188242 * A045667 A045658 A167305
Adjacent sequences: A103327 A103328 A103329 * A103331 A103332 A103333


KEYWORD

more,nonn


AUTHOR

R. Douglas Chatham (d.chatham(AT)moreheadstate.edu), Jan 31 2005


EXTENSIONS

Further terms from R. Douglas Chatham (d.chatham(AT)moreheadstate.edu), Feb 15 2005, Apr 20 2007, Apr 28 2007
a(12) corrected by R. Douglas Chatham (d.chatham(AT)moreheadstate.edu), May 12 2009


STATUS

approved



