The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103201 a(1) = 11, a(2) = 19, a(3) = 89, a(4) = 151; for n >= 5, a(n) = sqrt(a(n-4)^2 + 60*a(n-2)^2 + 4*a(n-2)*sqrt(210 + 15*a(n-4)^2)). 3
 11, 19, 89, 151, 701, 1189, 5519, 9361, 43451, 73699, 342089, 580231, 2693261, 4568149, 21203999, 35964961, 166938731, 283151539, 1314305849, 2229247351, 10347508061, 17550827269, 81465758639, 138177370801, 641378561051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,8,0,-1). FORMULA G.f.: x*(11 + 19*x + x^2 - x^3)/(1 - 8*x^2 + x^4). - Georg Fischer, May 24 2019 MAPLE b[1]:=11:b[2]:=19:b[3]:=89:b[4]:=151: for n from 5 to 28 do b[n]:=sqrt(b[n-4]^2+60*b[n-2]^2+4*b[n-2]*sqrt(210+15*b[n-4]^2)) od:seq(b[n], n=1..28); # Emeric Deutsch, Apr 13 2005 MATHEMATICA LinearRecurrence[{0, 8, 0, -1}, {11, 19, 89, 151}, 30] (* Georg Fischer, May 24 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)) \\ G. C. Greubel, May 24 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4) )); // G. C. Greubel, May 24 2019 (Sage) a=(x*(11+19*x+x^2-x^3)/(1-8*x^2+x^4)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019 (GAP) a:=[11, 19, 89, 151];; for n in [5..30] do a[n]:=8*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 24 2019 CROSSREFS This is the sequence b(n) defined in A103200. Bhanu and Deshpande ask for a proof that the terms of the sequence are always integers. Cf. A103200. Sequence in context: A107637 A229542 A039365 * A199338 A043188 A043968 Adjacent sequences:  A103198 A103199 A103200 * A103202 A103203 A103204 KEYWORD nonn AUTHOR K. S. Bhanu and M. N. Deshpande, Mar 24 2005 EXTENSIONS More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 17:32 EDT 2020. Contains 338027 sequences. (Running on oeis4.)