The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103138 Second column of inverse of Delannoy triangle. 1
0, 1, -3, 10, -38, 158, -698, 3218, -15310, 74614, -370610, 1869338, -9549174, 49302030, -256859754, 1348695330, -7129819038, 37916710374, -202708895330, 1088819681834, -5873129780422, 31800514324606, -172780691083034, 941714095635890, -5147414826440558, 28210011946820438 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The positive sequence has g.f. (1+x*S(x))*x*S(x).
Second column of A103136.
LINKS
FORMULA
G.f.: (1-x*S(-x))*x*S(-x), where S(x) is the g.f. of the large Schroeder numbers A006318.
Conjecture: 2*n*a(n) +(13*n-20)*a(n-1) +(8*n-27)*a(n-2) +(n-5)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: x = Sum_{n>=1} a(n) * x^n * (1+x)^n / (1-x)^(n+1). - Paul D. Hanna, Aug 06 2013
G.f. satisfies: A(x*(1+x)/(1-x)) = x - x^2. - Paul D. Hanna, Aug 06 2013
a(n) ~ (-1)^n * (1-2*sqrt(2)) * sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
EXAMPLE
G.f.: A(x) = x - 3*x^2 + 10*x^3 - 38*x^4 + 158*x^5 - 698*x^6 + ... where A( x*(1+x)/(1-x) ) / (1-x) = x.
MATHEMATICA
CoefficientList[Series[(1-x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x))*x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(PARI) {a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1+x)^k/(1-x+x*O(x^n))^(k+1)), n))} \\ Paul D. Hanna, Aug 06 2013
CROSSREFS
Sequence in context: A151062 A000902 A151063 * A074527 A338781 A359109
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 24 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 19:52 EDT 2024. Contains 373432 sequences. (Running on oeis4.)