login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 7*10^n + 5*R_n - 2 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
1

%I #25 Sep 08 2022 08:45:16

%S 0,1,4,18,19,646,814,5794,16524,19495,26010,29238,72120

%N Numbers n such that 7*10^n + 5*R_n - 2 is prime, where R_n = 11...1 is the repunit (A002275) of length n.

%C Also numbers n such that (68*10^n-23)/9 is prime.

%C a(14) > 10^5. - _Robert Price_, Oct 01 2015

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/75553.htm#prime">Prime numbers of the form 755...553</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A101144(n-1) + 1 for n>1.

%t Do[ If[ PrimeQ[(68*10^n - 23)/9], Print[n]], {n, 0, 10000}]

%t Select[Range[10000], PrimeQ[(68 10^# - 23)/9] &] (* _Vincenzo Librandi_, Oct 02 2015 *)

%o (Magma) [n: n in [0..100]| IsPrime((68*10^n-23) div 9)]; // _Vincenzo Librandi_, Oct 02 2015

%o (PARI) for(n=0, 1e4, if (isprime((68*10^n-23)/9), print1(n", "))) \\ _Altug Alkan_, Oct 02 2015

%Y Cf. A002275, A101144.

%K more,nonn

%O 1,3

%A _Robert G. Wilson v_, Jan 19 2005

%E a(9)-a(12) from Kamada data by _Robert Price_, Dec 14 2010

%E a(1)=0 inserted and a(13) added by _Robert Price_, Oct 01 2015