login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (x-1)/(-2*x^2 + 3*x^3 + 2*x - 1).
0

%I #26 Mar 08 2024 12:11:16

%S 1,1,0,1,5,8,9,17,40,73,117,208,401,737,1296,2321,4261,7768,13977,

%T 25201,45752,83033,150165,271520,491809,891073,1613088,2919457,

%U 5285957,9572264,17330985,31375313,56805448

%N G.f.: (x-1)/(-2*x^2 + 3*x^3 + 2*x - 1).

%C Inverse binomial transform of A078017. Inversion of A052102.

%C Floretion Algebra Multiplication Program, FAMP Code: 4jbasekseq[ (+ 'ii' + 'jj' + 'ij' + 'ji' + e)*x) ] where x is defined as 1/4 times the sum of all 16 floretion basis vectors.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,3).

%F a(n+3) = 2a(n+2) - 2a(n+1) + 3a(n), a(0) = 1, a(1) = 1, a(2) = 0

%F a(n) = Sum(k=1..n, Sum(i=k..n, (Sum(j=0..k, binomial(j,-3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k,j)))*binomial(n+k-i-1,k-1))), n > 0, a(0)=1. - _Vladimir Kruchinin_, May 05 2011

%o (Maxima)

%o a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* _Vladimir Kruchinin_, May 05 2011 */

%o (Maxima) makelist(coeff(taylor((x-1)/(-2*x^2+3*x^3+2*x-1), x, 0, n), x, n), n, 0, 32); /* _Bruno Berselli_, May 30 2011 */

%Y Cf. A078017, A052102, A077952.

%K nonn

%O 0,5

%A _Creighton Dement_, Feb 11 2005