The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102785 G.f.: (x-1)/(-2*x^2 + 3*x^3 + 2*x - 1). 0
 1, 1, 0, 1, 5, 8, 9, 17, 40, 73, 117, 208, 401, 737, 1296, 2321, 4261, 7768, 13977, 25201, 45752, 83033, 150165, 271520, 491809, 891073, 1613088, 2919457, 5285957, 9572264, 17330985, 31375313, 56805448 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Inverse binomial transform of A078017. Inversion of A052102. LINKS Index entries for linear recurrences with constant coefficients, signature (2,-2,3). FORMULA a(n+3) = 2a(n+2) - 2a(n+1) + 3a(n), a(0) = 1, a(1) = 1, a(2) = 0 a(n) = Sum(k=1..n, Sum(i=k..n, (Sum(j=0..k, binomial(j,-3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k,j)))*binomial(n+k-i-1,k-1))), n > 0, a(0)=1. - Vladimir Kruchinin, May 05 2011 PROG Floretion Algebra Multiplication Program, FAMP Code: 4jbasekseq[ (+ 'ii' + 'jj' + 'ij' + 'ji' + e)*x) ] where x is defined as 1/4 times the sum of all 16 floretion basis vectors. (Maxima) a(n):=sum(sum((sum(binomial(j, -3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k, j), j, 0, k))*binomial(n+k-i-1, k-1), i, k, n), k, 1, n); /* Vladimir Kruchinin, May 05 2011 */ (Maxima) makelist(coeff(taylor((x-1)/(-2*x^2+3*x^3+2*x-1), x, 0, n), x, n), n, 0, 32); /* Bruno Berselli, May 30 2011 */ CROSSREFS Cf. A078017, A052102, A077952. Sequence in context: A045221 A046287 A051220 * A260348 A276934 A127493 Adjacent sequences: A102782 A102783 A102784 * A102786 A102787 A102788 KEYWORD nonn AUTHOR Creighton Dement, Feb 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 07:29 EST 2022. Contains 358677 sequences. (Running on oeis4.)