login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102736
Number of permutations of n elements without cycles whose length is a multiple of 3.
4
1, 1, 2, 4, 16, 80, 400, 2800, 22400, 179200, 1792000, 19712000, 216832000, 2818816000, 39463424000, 552487936000, 8839806976000, 150276718592000, 2554704216064000, 48539380105216000, 970787602104320000, 19415752042086400000, 427146544925900800000, 9824370533295718400000, 225960522265801523200000, 5649013056645038080000000, 146874339472770990080000000, 3818732826292045742080000000
OFFSET
0,3
COMMENTS
Differs from A247007 first at n=27. - Alois P. Heinz, Sep 09 2014
LINKS
FORMULA
E.g.f.: (1-x^3)^(1/3)/(1-x).
a(n) ~ n! * 3^(1/3) / (GAMMA(2/3) * n^(1/3)). - Vaclav Kotesovec, Mar 15 2014
EXAMPLE
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 400*x^6 + 2800*x^7 + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
irem(j, 3)=0, 0, a(n-j)*(j-1)!*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..27); # Alois P. Heinz, Jul 31 2017
MATHEMATICA
nn=21; a=Sum[x^n/n, {n, 3, nn, 3}]; Range[0, nn]!CoefficientList[Series[Exp[Log[1/(1-x)]-a], {x, 0, nn}], x] (* Geoffrey Critzer, Nov 11 2012 *)
a[ n_] := If[ n < 0, 0, n! With[{m = Quotient[n, 3]}, (-1)^m Binomial[-2/3, m]]]; (* Michael Somos, Aug 05 2016 *)
PROG
(PARI) {a(n) = my(m); if( n<0, 0, m = n\3; n! * (-1)^m * binomial(-2/3, m))}; /* Michael Somos, Aug 05 2016 */
CROSSREFS
Sequence in context: A058926 A340900 A347631 * A247007 A103619 A027436
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 08 2005
STATUS
approved