login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101939
Numbers n with omega(n) > omega of 3 nearest larger and 3 nearest smaller neighbors.
1
6, 30, 42, 60, 66, 70, 78, 84, 90, 110, 114, 120, 126, 150, 174, 186, 190, 204, 210, 246, 290, 294, 300, 322, 330, 336, 385, 390, 414, 420, 450, 462, 510, 540, 546, 570, 630, 660, 690, 714, 720, 770, 780, 786, 798, 840, 846, 858, 870, 910
OFFSET
1,1
LINKS
EXAMPLE
6 is in the sequence because it has two unique prime factors (2 and 3) whereas 3, 4, 5, 7, 8 and 9 each have fewer.
MATHEMATICA
For[i=3, i<1000, If[And[Length[FactorInteger[i-3]] < Length[FactorInteger[i]], Length[FactorInteger[i-2]] < Length[FactorInteger[i]], Length[FactorInteger[i-1]] < Length[FactorInteger[i]], Length[FactorInteger[i+1]] < Length[FactorInteger[i]], Length[FactorInteger[i+2]] < Length[FactorInteger[i]], Length[FactorInteger[i+3]] < Length[FactorInteger[i]]], Print[i]]; i++]
Clear[noQ]; noQ[n_]:=And@@(#<Max[n]&/@Drop[n, {4}]); Off[Drop::normal]; Off[ Drop::seqs]; Flatten[Position[Partition[ PrimeNu[Range[1000]], 7, 1], _?noQ]]+ 3 (* Harvey P. Dale, Mar 05 2012 *)
Select[Range[650], PrimeNu[#] > Max[PrimeNu[# - 1], PrimeNu[# - 2], PrimeNu[# - 3], PrimeNu[# + 1], PrimeNu[# + 2], PrimeNu[# + 3]] &] (* G. C. Greubel, May 21 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Neil Fernandez, Dec 21 2004
STATUS
approved