login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A101872
Number of Abelian groups of order 2n.
5
1, 2, 1, 3, 1, 2, 1, 5, 2, 2, 1, 3, 1, 2, 1, 7, 1, 4, 1, 3, 1, 2, 1, 5, 2, 2, 3, 3, 1, 2, 1, 11, 1, 2, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1, 7, 2, 4, 1, 3, 1, 6, 1, 5, 1, 2, 1, 3, 1, 2, 2, 15, 1, 2, 1, 3, 1, 2, 1, 10, 1, 2, 2, 3, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 11, 1, 4, 2, 6, 1, 2, 1, 5
OFFSET
1,2
LINKS
FORMULA
a(n) = A000688(2n).
Multiplicative with a(2^k) = A000041(1+k), and for odd primes p, a(p^k) = A000041(k), where A000041(k) is the number of partitions of k. - Antti Karttunen, Sep 27 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (1-A048651) * A021002 = 3.26425865613408900779... . - Amiram Eldar, Sep 23 2023
MATHEMATICA
Table[FiniteAbelianGroupCount[2 k], {k, 1, 100}] (* Geoffrey Critzer, Dec 29 2014 *)
PROG
(PARI) A101872(n) = factorback(apply(e -> numbpart(e), factor(2*n)[, 2])); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
Bisection of A000688.
Cf. also A101876 (bisection of this sequence).
Sequence in context: A340785 A355758 A206778 * A251659 A174892 A317656
KEYWORD
nonn,mult,easy
AUTHOR
N. J. A. Sloane, Jan 28 2005
EXTENSIONS
More terms from Joshua Zucker, May 10 2006
STATUS
approved