OFFSET
1,2
COMMENTS
Numbers n such that (320*10^n + 31)/9 is prime.
Numbers n such that digit 3 followed by n >= 0 occurrences of digit 5 followed by digit 9 is prime.
Numbers corresponding to terms <= 956 are certified primes.
a(18) > 10^5. - Robert Price, May 31 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102973(n+1) - 1.
EXAMPLE
3559 is prime, hence 2 is a term.
MATHEMATICA
For [n = 1, n <= 3000, n++, If[PrimeQ[(320*10^n + 31)/9], Print[n]]] (Steinerberger)
PROG
(PARI) a=39; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-31)
(PARI) for(n=0, 1500, if(isprime((320*10^n+31)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
EXTENSIONS
a(9) and a(10) Stefan Steinerberger, Feb 03 2006
3236 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(16) from Kamada data by Ray Chandler, May 01 2015
a(17) from Robert Price, May 31 2015
STATUS
approved