login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A101741
4th row of A101646.
2
4, 7, 11, 15, 18, 22, 25, 29, 33, 36, 40, 44, 47, 51, 54, 58, 62, 65, 69, 72, 76, 80, 83, 87, 91, 94, 98, 101, 105, 109, 112, 116, 120, 123, 127, 130, 134, 138, 141, 145, 148, 152, 156, 159, 163, 167, 170, 174, 177, 181, 185, 188, 192, 195, 199, 203, 206, 210, 214
OFFSET
1,1
MAPLE
with(combinat) : A014417 := proc(n) local a, i, nredu, j; i := 1 ; while fibonacci(i) <= n do i := i+1 ; od ; nredu := n ; a := [seq(0, j=1..i-1)] ; while i >= 2 do if fibonacci(i) <= nredu then nredu := nredu-fibonacci(i) ; a := subsop(i=1, a) ; fi ; i := i-1 ; od ; RETURN(a) ; end: A101646 := proc(n, k) local a, nZeck, kZeck, i, j ; a := 0 ; nZeck := A014417(n) ; kZeck := A014417(k) ; for i from 2 to nops(nZeck) do for j from 2 to nops(kZeck) do a := a+op(i, nZeck)*op(j, kZeck)*fibonacci(i+j-2) ; od: od: RETURN(a) ; end: A101741 := proc(n) A101646(4, n) ; end: seq(A101741(n), n=1..80) ; # R. J. Mathar, Aug 07 2007
MATHEMATICA
T[n_, k_] := With[{phi2 = GoldenRatio^2}, n k - Floor[(k + 1)/phi2] Floor[ (n + 1)/phi2]];
a[k_] := T[4, k];
Array[a, 60] (* Jean-François Alcover, Mar 31 2020 *)
CROSSREFS
Cf. A101646.
Sequence in context: A310735 A003670 A084390 * A247432 A310736 A310737
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Aug 07 2007
STATUS
approved