OFFSET
1,1
COMMENTS
Numbers n such that (410*10^n + 31)/9 is prime.
Numbers n such that digit 4 followed by n >= 0 occurrences of digit 5 followed by digit 9 is prime.
Numbers corresponding to terms <= 620 are certified primes.
a(17) > 10^5. - Robert Price, May 25 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102993(n) - 1.
EXAMPLE
4555559 is prime, hence 5 is a term.
MATHEMATICA
Select[Range[0, 1000], PrimeQ[(410*10^# + 31)/9] &] (* Robert Price, May 25 2015 *)
PROG
(PARI) a=49; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-31)
(PARI) for(n=0, 1500, if(isprime((410*10^n+31)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(13)-a(15) from Kamada data by Ray Chandler, Apr 30 2015
a(16) from Robert Price, May 25 2015
STATUS
approved