login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101683
Write exp(sqrt(1+x)-1) = Sum c(n) x^n/n!; then a(n) = numerator of c(n).
2
1, 1, 0, 1, -5, 9, -329, 3655, -11961, 721315, -12310199, 29326887, -4939227215, 113836841041, -356357531655, 77087063678521, -2238375706930349, 17366683494629835, -2294640596998068569, 80381887628910919255
OFFSET
0,5
COMMENTS
Odd part of A000806.
LINKS
FORMULA
Numerator of c(n) satisfying c(n) = (c(n-2) - (4*n-6)*c(n-1))/4, c(0) = 1, c(1) = 1/2. - Robert Israel, Nov 30 2023
EXAMPLE
exp(sqrt(1+x)-1) = 1+(1/2)*x+(1/48)*x^3-(5/384)*x^4+(3/320)*x^5-(329/46080)*x^6+(731/129024)*x^7-(1329/286720)*x^8+... - From N. J. A. Sloane, Aug 29 2012
MAPLE
c[0]:= 1: c[1]:= 1/2:
for n from 2 to 100 do c[n]:= (c[n-2]-(4*n-6)*c[n-1])/4 od:
seq(numer(c[n]), n=0..100); # Robert Israel, Nov 30 2023
MATHEMATICA
With[{nn=20}, Numerator[CoefficientList[Series[Exp[Sqrt[1+x]-1], {x, 0, nn}], x]Range[0, nn]!]] (* Harvey P. Dale, Aug 29 2012 *)
PROG
(PARI) my(x='x+O('x^30)); apply(numerator, Vec(serlaplace(exp(sqrt(1+x)-1)))) \\ Michel Marcus, Nov 30 2023
CROSSREFS
Denominators are 2^A101684(n).
Sequence in context: A046093 A097086 A109076 * A348132 A098135 A112259
KEYWORD
sign,frac
AUTHOR
Ralf Stephan, Dec 13 2004
EXTENSIONS
Definition clarified by N. J. A. Sloane, Aug 29 2012
STATUS
approved