login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101541
Indices of primes in sequence defined by A(0) = 61, A(n) = 10*A(n-1) + 81 for n > 0.
1
0, 1, 2, 3, 13, 14, 22, 27, 53, 99, 271, 372, 402, 567, 638, 841, 968, 1254, 1258, 3046, 4837, 6388, 12754, 15141, 34942, 37651, 38107, 38685, 39383, 43392, 47279, 55029, 161191, 226478
OFFSET
1,3
COMMENTS
Numbers n such that (630*10^n - 81)/9 is prime.
Numbers n such that digit 6 followed by n >= 0 occurrences of digit 9 followed by digit 1 is prime.
Numbers corresponding to terms <= 968 are certified primes.
a(35) > 3*10^5. - Robert Price, Jul 10 2023
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
FORMULA
a(n) = A103048(n) - 1.
EXAMPLE
69991 is prime, hence 3 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(630*10^# - 81)/9] &] (* Robert Price, Oct 14 2015 *)
PROG
(PARI) a=61; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+81)
(PARI) for(n=0, 1500, if(isprime((630*10^n-81)/9), print1(n, ", ")))
(Magma) [n: n in [0..500] | IsPrime((630*10^n-81) div 9)]; // Vincenzo Librandi, Oct 15 2015
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 06 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(25)-a(32) from Kamada data by Ray Chandler, Apr 30 2015
a(33) from Robert Price, Oct 14 2015
a(34) from Robert Price, Jul 10 2023
STATUS
approved