OFFSET
1,3
COMMENTS
Numbers n such that (630*10^n - 81)/9 is prime.
Numbers n such that digit 6 followed by n >= 0 occurrences of digit 9 followed by digit 1 is prime.
Numbers corresponding to terms <= 968 are certified primes.
a(35) > 3*10^5. - Robert Price, Jul 10 2023
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103048(n) - 1.
EXAMPLE
69991 is prime, hence 3 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(630*10^# - 81)/9] &] (* Robert Price, Oct 14 2015 *)
PROG
(PARI) a=61; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+81)
(PARI) for(n=0, 1500, if(isprime((630*10^n-81)/9), print1(n, ", ")))
(Magma) [n: n in [0..500] | IsPrime((630*10^n-81) div 9)]; // Vincenzo Librandi, Oct 15 2015
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 06 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(25)-a(32) from Kamada data by Ray Chandler, Apr 30 2015
a(33) from Robert Price, Oct 14 2015
a(34) from Robert Price, Jul 10 2023
STATUS
approved