login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101347
Triangle read by rows: T(n,k) is the number of k-matchings of the wheel graph with n spokes.
0
1, 1, 1, 1, 4, 1, 6, 3, 1, 8, 10, 1, 10, 20, 5, 1, 12, 33, 20, 1, 14, 49, 49, 7, 1, 16, 68, 96, 34, 1, 18, 90, 165, 99, 9, 1, 20, 115, 260, 225, 52, 1, 22, 143, 385, 440, 176, 11, 1, 24, 174, 544, 777, 456, 74, 1, 26, 208, 741, 1274, 1001, 286, 13, 1, 28, 245, 980, 1974, 1960
OFFSET
0,5
REFERENCES
C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
LINKS
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
T(n, k)=nC(n-k, k)/(n-k)+nC(n-k, k-1) (n>1). G.f.=(1+tz^2)(1-z+tz-tz^2)/(1-z-tz^2)^2.
EXAMPLE
T(3,2)=3 because the 2-matchings of the wheel W_3 (triangle ABC with spokes OA,OB,OC) are (AB,OC), (BC, OA) and (CA, OB).
Triangle begins:
1;
1,1;
1,4;
1,6,3;
1,8,10;
1,10,20,5;
1,12,33,20;
Rows as matching-generating polynomials:
1 + x,
1 + 4*x,
1 + 6*x + 3*x^2,
1 + 8*x + 10*x^2,
1 + 10*x + 20*x^2 + 5*x^3,
...
MAPLE
T:=proc(n, k) if n=0 and k=0 then 1 elif n=1 and k=1 then 1 elif k>ceil(n/2) then 0 else n*binomial(n-k, k)/(n-k)+n*binomial(n-k, k-1) fi end: for n from 0 to 15 do seq(T(n, k), k=0..ceil(n/2)) od; # yields sequence in triangular form
MATHEMATICA
CoefficientList[Table[x^(n/2) (n Sqrt[x] Fibonacci[n, 1/Sqrt[x]] + LucasL[n, 1/Sqrt[x]]), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
CoefficientList[LinearRecurrence[{2, -1 + 2 x, -2 x, -x^2}, {2, 1 + x, 1 + 4 x, 1 + 6 x + 3 x^2}, 10], x] (* Eric W. Weisstein, Apr 03 2018 *)
CoefficientList[CoefficientList[Series[(1 + x - z + 2 x z - 3 x z^2 + x^2 z^2 - 2 x^2 z^3)/(-1 + z + x z^2)^2, {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
CROSSREFS
Row sums yield A061705. T(2n, n)=A005893(n)
Sequence in context: A153017 A038457 A141649 * A200344 A328726 A127556
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 25 2004
STATUS
approved