login
A101322
a(n) = n - (least divisor of n >= the square root of n) + (greatest divisor of n <= the square root of n).
1
1, 1, 1, 4, 1, 5, 1, 6, 9, 7, 1, 11, 1, 9, 13, 16, 1, 15, 1, 19, 17, 13, 1, 22, 25, 15, 21, 25, 1, 29, 1, 28, 25, 19, 33, 36, 1, 21, 29, 37, 1, 41, 1, 37, 41, 25, 1, 46, 49, 45, 37, 43, 1, 51, 49, 55, 41, 31, 1, 56, 1, 33, 61, 64, 57, 61, 1, 55, 49, 67, 1, 71, 1, 39, 65, 61, 73, 71, 1, 78, 81, 43, 1, 79, 73, 45, 61, 85, 1, 89, 85
OFFSET
1,4
COMMENTS
a(n)/n represents, in some sense, how 'square' a positive integer n is. a(n)=1 iff n is a prime number (or 1). a(n)=n iff n is a square number. For nonsquare n, the first (note: not zeroth) partial quotient of the continued fraction of a(n)/n is n iff n is prime, else 1.
LINKS
FORMULA
a(n) = n + A033676(n) - A033677(n).
EXAMPLE
a(6) = 5 because 6-3+2=5
a(7) = 1 because 7-7+1=1
a(9) = 9 because 9-3+3=9.
MATHEMATICA
Table[n - If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2 + 1]], Sqrt[n]] + If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]], {n, 1, 128}]
PROG
(PARI) A101322(n) = fordiv(n, d, if((d^2) >= n, return(n+(n/d)-d))); \\ Antti Karttunen, Jan 18 2025
CROSSREFS
Cf. A008578 (positions of 1's), A000290 (fixed points), A033676, A033677.
Sequence in context: A373364 A107463 A157104 * A029644 A345305 A024919
KEYWORD
nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 24 2004
EXTENSIONS
Name corrected to match the given formula and the data, more terms added by Antti Karttunen, Jan 18 2025
STATUS
approved