|
|
A101269
|
|
a(1)=0, a(2)=1, a(n+2) = (8*n^2+2*n+1)*a(n+1) - 2*n*(2*n-1)^3*a(n).
|
|
2
|
|
|
0, 1, 11, 299, 15371, 1285371, 159158691, 27376820379, 6246962876475, 1826295061189275, 665694890795056275, 296004348848796457275, 157710301268790933578475, 99189386694727572925906875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n+1) = (2*n)!*(2*G*binomial(2*n, n)/4^n - Integral_{t=0..oo} t/cosh(t)^(2*n+1) dt) where G = 0.915965594... is Catalan's constant.
a(n) = (2*n-4)! + (2*n-3)^2*a(n-1) for n = 2, 3, ... with a(1) = 0. - Johannes W. Meijer, May 24 2009
|
|
MATHEMATICA
|
RecurrenceTable[{a[1]==0, a[2]==1, a[n]==(8(n-2)^2+2(n-2)+1)a[n-1]- 2(n-2)(2(n-2)-1)^3 a[n-2]}, a, {n, 20}] (* Harvey P. Dale, May 06 2013 *)
|
|
PROG
|
(PARI) a(n)=if(n<3, (n+1)%2, (8*(n-2)^2+2*(n-2)+1)*a(n-1)-2*(n-2)*(2*(n-2)-1)^3*a(n-2)) \\ Benoit Cloitre, Dec 02 2005
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|