Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 30 2023 16:27:49
%S 1,4,0,0,0,256,-3072,24576,-163840,983040,-5603328,32112640,
%T -195035136,1283457024,-8975810560,64281903104,-458387095552,
%U 3216662069248,-22225382014976,152271623028736,-1043452104015872,7199883459035136,-50175319780360192,353054558068408320
%N G.f. defined as the limit: A(x) = lim_{n->oo} F(n)^(1/4^(n-1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^4 + (4x)^((4^n-1)/3) for n >= 1.
%C The Euler transform of the power series A(x) at x=1/4 converges to the constant: c = Sum_{n>=0} (Sum_{k=0..n} C(n,k)*a(k)/4^k)/2^(n+1) = 2.030544704345910171947313128... which is the limit of S(n)^(1/4^(n-1)) where S(0)=1, S(n+1) = S(n)^4 +1.
%F G.f. begins: A(x) = (1+m*x) + m^m*x^(m+1)/(1+m*x)^(m-1) + ... at m=4.
%e The iteration begins:
%e F(0) = 1,
%e F(1) = 1 + 4*x,
%e F(2) = 1 + 16*x + 96*x^2 + 256*x^3 + 256*x^4 + 1024*x^5,
%e F(3) = 1 + 64*x + 1920*x^2 + 35840*x^3 + ... + 4398046511104*x^21.
%e The 4^(n-1)-th roots of F(n) tend to the limit of A(x):
%e F(1)^(1/4^0) = 1 + 4*x
%e F(2)^(1/4^1) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ...
%e F(3)^(1/4^2) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ...
%o (PARI) {a(n)=local(F=1,A,L);if(n==0,A=1,L=ceil(log(n+1)/log(4)); for(k=1,L,F=F^4+(4*x)^((4^k-1)/3)); A=polcoeff((F+x*O(x^n))^(1/4^(L-1)),n));A}
%Y Cf. A101189, A101192, A101194.
%K sign
%O 0,2
%A _Paul D. Hanna_, Dec 07 2004