login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101193
G.f. defined as the limit: A(x) = lim_{n->oo} F(n)^(1/4^(n-1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^4 + (4x)^((4^n-1)/3) for n >= 1.
2
1, 4, 0, 0, 0, 256, -3072, 24576, -163840, 983040, -5603328, 32112640, -195035136, 1283457024, -8975810560, 64281903104, -458387095552, 3216662069248, -22225382014976, 152271623028736, -1043452104015872, 7199883459035136, -50175319780360192, 353054558068408320
OFFSET
0,2
COMMENTS
The Euler transform of the power series A(x) at x=1/4 converges to the constant: c = Sum_{n>=0} (Sum_{k=0..n} C(n,k)*a(k)/4^k)/2^(n+1) = 2.030544704345910171947313128... which is the limit of S(n)^(1/4^(n-1)) where S(0)=1, S(n+1) = S(n)^4 +1.
FORMULA
G.f. begins: A(x) = (1+m*x) + m^m*x^(m+1)/(1+m*x)^(m-1) + ... at m=4.
EXAMPLE
The iteration begins:
F(0) = 1,
F(1) = 1 + 4*x,
F(2) = 1 + 16*x + 96*x^2 + 256*x^3 + 256*x^4 + 1024*x^5,
F(3) = 1 + 64*x + 1920*x^2 + 35840*x^3 + ... + 4398046511104*x^21.
The 4^(n-1)-th roots of F(n) tend to the limit of A(x):
F(1)^(1/4^0) = 1 + 4*x
F(2)^(1/4^1) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ...
F(3)^(1/4^2) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ...
PROG
(PARI) {a(n)=local(F=1, A, L); if(n==0, A=1, L=ceil(log(n+1)/log(4)); for(k=1, L, F=F^4+(4*x)^((4^k-1)/3)); A=polcoeff((F+x*O(x^n))^(1/4^(L-1)), n)); A}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 07 2004
STATUS
approved