login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101070
Indices of primes in sequence defined by A(0) = 81, A(n) = 10*A(n-1) + 41 for n > 0.
1
20, 26, 59, 470, 1073, 5780
OFFSET
1,1
COMMENTS
Numbers n such that (770*10^n - 41)/9 is prime.
Numbers n such that digit 8 followed by n >= 0 occurrences of digit 5 followed by digit 1 is prime.
Numbers corresponding to terms <= 470 are certified primes.
a(7) > 10^5. - Robert Price, Oct 21 2015
It appears that a(n)+1 are all divisible by 3. - Robert Price, Oct 21 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
FORMULA
a(n) = A103083(n) - 1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
EXAMPLE
8555555555555555555551 is prime, hence 20 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(770*10^# - 41)/9] &] (* Robert Price, Oct 21 2015 *)
Flatten[Position[NestList[10#+41&, 81, 5800], _?(PrimeQ[#]&)]]-1 (* Harvey P. Dale, May 09 2018 *)
PROG
(PARI) a=81; for(n=0, 1200, if(isprime(a), print1(n, ", ")); a=10*a+41)
(PARI) for(n=0, 1200, if(isprime((770*10^n-41)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 30 2004
EXTENSIONS
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
STATUS
approved