OFFSET
1,2
COMMENTS
Numbers n such that (860*10^n + 13)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 5 followed by digit 7 is prime.
Numbers corresponding to terms <= 126 are certified primes.
a(9) > 10^5. - Robert Price, Nov 10 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103102(n+1) - 1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008; adjusted by Robert Price, Nov 10 2015
EXAMPLE
95555557 is prime, hence 6 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(860*10^# + 13)/9] &] (* Robert Price, Nov 10 2015 *)
PROG
(PARI) a=97; for(n=0, 2200, if(isprime(a), print1(n, ", ")); a=10*a-13)
(PARI) for(n=0, 2200, if(isprime((860*10^n+13)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
EXTENSIONS
a(6)-a(8) from Kamada data by Ray Chandler, Apr 28 2015
Corrected Formula to adjust for change in A103102 by Robert Price, Nov 10 2015
STATUS
approved