login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100729
Period of the first difference of Ulam 1-additive sequence U(2,2n+1).
6
32, 26, 444, 1628, 5906, 80, 126960, 380882, 2097152, 1047588, 148814, 8951040, 5406720, 242, 127842440, 11419626400, 12885001946, 160159528116, 687195466408, 6390911336402, 11728121233408, 20104735604736
OFFSET
2,1
COMMENTS
It was proved by Akeran that a(2^k-1) = 3^(k+1) - 1.
Note that a(n)=2^(2n+1) as soon as A100730(n)=2^(2n+3)-2, that happens for n=(m-2)/2 with m>=6 being an even element of A073639.
LINKS
S. R. Finch, Patterns in 1-additive sequences, Experimental Mathematics 1 (1992), 57-63.
EXAMPLE
For k=2, we have a(3)=3^3-1=26.
CROSSREFS
Cf. A100730 for the fundamental difference, A001857 for U(2, 3), A007300 for U(2, 5), A003668 for U(2, 7).
Cf. also A006844.
Sequence in context: A028697 A105701 A161885 * A070728 A070619 A070626
KEYWORD
nonn
AUTHOR
Ralf Stephan, Dec 03 2004
EXTENSIONS
a(3) corrected from 25 to 26 by Hugo van der Sanden and Bertram Felgenhauer (int-e(AT)gmx.de), Nov 11 2007
More terms from Balakrishnan V (balaji.iitm1(AT)gmail.com), Nov 15 2007
a(21..31) and b-file from Max Alekseyev, Dec 01 2007
STATUS
approved