ON SOME 1-ADDITIVE SEQUENCES

MATTHEW AKERAN

Abstract

We give a characterization for numbers in a class of 1additive sequences and thus solve a conjecture by Stephan and, more generally, a problem posed by Finch.

1 -additive sequences have the definition " a_{n} is smallest number which is uniquely $a_{j}+a_{k}, j<k$ ". Our interest in these sequences was sparked by Stephan $[\mathbf{S}]$ who observed that, for start values 2,7 , the first differences seemed to have period 26 (this is sequence A003668 from [OEIS]). However, Finch already proved $[\mathbb{E}]$ that all sequences with start values $(2, v), v \geq 5$ have periodic differences. In the following, we will give an elementary proof of a more general proposition, namely
Theorem 1. The 1-additive sequences with start values $2,2^{k}-1$, for $k \geq 3$ are identical to sets $\left\{2,2^{k}+1\right\} \cup B$, where B is defined to consist of numbers of the form

$$
2 x+2^{k+1} y+2^{k}-3+\left(2^{2 k+1}-2\right) m
$$

where the conditions hold

$$
\begin{gather*}
0 \leq x \leq 2^{k}-1, \quad 0 \leq y \leq 2^{k}-1 \\
x+y>0, \quad m \geq 0, \quad x \& y=0 \tag{1}
\end{gather*}
$$

and \& denotes the bitwise-and operator.
As x and y are k-bit binary numbers, and the possible pairs of corresponding bits in the two numbers are $(0,0),(0,1)$, and (1,0) (with the case $x=y=0$ excluded), then from the theorem would follow two corollaries, stated already as conjectures by Finch, and also the first, in the case $k=3$, by Stephan.
Corollary 1. The 1-additive sequences with start values $2,2^{k}-1$, for $k \geq 3$ have differences with period $3^{k}-1$.
Corollary 2. The span between periods of first differences of 1-additive sequences with start values $2,2^{k}-1$, for $k \geq 3$ is $2^{2 k+1}-2$.

In the rest of the paper, we will prove the theorem using four lemmata, where the last one coincides with Conjecture 2 in Finch's paper $[\mathbb{E}]$.
Definition. Let

$$
\begin{aligned}
\mathcal{O}(x, y, m)=\mathcal{O}(x, y, m ; k) & =2 x+2^{k+1} y+2^{k}-3+\left(2^{2 k+1}-2\right) m \\
\mathcal{E}(x, y, m) & =\mathcal{O}(x, y, m)+2^{k}-3
\end{aligned}
$$

First see that, if the conditions in (1) hold, then every odd number $2^{k}-1$ and above has a unique representation $\mathcal{O}(x, y, m)$. Also, every even number $2^{k+1}-4$ and above has a unique representation in the form $\mathcal{E}(x, y, m)$.
Lemma 1. Suppose $x \& y=0, x>0, y>0$. Then exactly one of $(x-$ 1) $\& y, x \&(y-1)$ is zero.

Proof. Let c be the position of the lowest bit set in both x or y. If the c-th bit of x is set, then $(x-1) \& y=0$ but $x \&(y-1) \neq 0$. Exchange x and y.

Lemma 2. For any number $b \in B$, exactly one of $b-2$ and $b-2^{k+1}$ is in B.

Proof. Let $b=\mathcal{O}(x, y, m) \in B$,
(i) if $x>0$ and $y>0$, then $b-2=\mathcal{O}(x-1, y, m)$ and $b-2^{k+1}=$ $\mathcal{O}(x, y-1, m)$. Since $b \in B, x \& y=0$, so by Lemma $\mathbb{1}$, one of $b-2$ and $b-2^{k+1}$ is in B;
(ii) if $x=0, y=1$, then $b-2=\mathcal{O}\left(2^{k}-1,0, m\right) \in B, b-2^{k+1}=$ $\mathcal{O}(0,0, m)=\mathcal{O}\left(2^{k}-1,2^{k}-1, m-1\right) \notin B ;$
(iii) if $x=1, y=0$, then $b-2=\mathcal{O}(0,0, m) \notin B, b-2^{k+1}=\mathcal{O}\left(0,2^{k}-\right.$ $1, m-1) \in B$;
(iv) if $x=0, y>1$, then $b-2=\mathcal{O}\left(2^{k}-1, y-1, m\right) \notin B, b-2^{k+1}=$ $\mathcal{O}(0, y-1, m) \in B ;$
(v) if $x>1, y=0$, then $b-2=\mathcal{O}(x-1,0, m) \in B, b-2^{k+1}=$ $\mathcal{O}\left(x-1,2^{k}-1, m-1\right) \notin B$.

Lemma 3. If an odd number b is not in B, then either both or neither of $b-2$ and $b-2^{k+1}$ is in B.

Proof. Let $b=\mathcal{O}(x, y, m) \notin B$. Then $x \& y$ is not zero (note the illegal case $x=y=0$ resolves to $\left.\mathcal{O}\left(2^{k}-1,2^{k}-1, m-1\right)\right)$.
(i) If $x \& y$ has a single nonzero bit, and both x and y are multiples of $x \& y$, then both $x \&(y-1)$ and $(x-1) \& y$ are zero, so $b-2$ and $b-2^{k+1}$ are both in B.
(ii) If $x \& y$ has at least two nonzero bits, then the higher of the two bits is still nonzero in $x-1$ and $y-1$, so $(x-1) \& y$ and $x \&(y-1)$ are both nonzero, and $b-2$ and $b-2^{k+1}$ are neither in B.
(iii) $x \& y$ has one nonzero bit, but at least one smaller bit is set in x or y : If a smaller bit is set in x, then $x-1$ has the $x \& y$ bit set, so $(x-1) \& y>0$. If no smaller bit is set on in x, then all smaller bits are set in $x-1$, and at least one of these smaller bits is set in y, so $(x-1) \& y>0$. Therefore $(x-1) \& y>0$, whether x has any smaller bits set or not, so $b-2=\mathcal{O}(x-1, y, m)$ is not in B. Likewise, $b-2^{k+1}$ is not in B.

Lemma 4. If $a<b \in B$, and $a+b>2^{k+1}+2$, then there are $c<d \in B$, with $c \neq a$, and $a+b=c+d$.

Proof. Let the sums

$$
\begin{aligned}
& \mathcal{S}_{1}=\mathcal{O}(x, 0,0)+\mathcal{O}(0, y, m), \quad \mathcal{S}_{2}=\mathcal{O}(x, 0, m)+\mathcal{O}(0, y, 0), \\
& \mathcal{S}_{3}=\mathcal{O}\left(2^{k}-y-1, y, 0\right)+\mathcal{O}\left(x+y+1-2^{k}, 0, m\right), \text { if } x+y \geq 2^{k}, \\
& \mathcal{S}_{4}=\mathcal{O}\left(2^{k}-y, y-1,0\right)+\mathcal{O}(x+y, 0, m), \text { if } x+y<2^{k}
\end{aligned}
$$

(i) If none of x, y, m is zero, then $\mathcal{E}(x, y, m)=\mathcal{S}_{1}=\mathcal{S}_{2}$, and the sums have different terms.
(ii) If $m=0$, and neither x nor y is zero, then $\mathcal{E}(x, y, m)=\mathcal{S}_{1}=$ $\left\{\mathcal{S}_{3}\right.$ or $\left.\mathcal{S}_{4}\right\}$, and the sums have different terms.
(iii) If $m=0=y$, then $\mathcal{E}(x, 0,0)=\mathcal{O}(x-1,0,0)+\mathcal{O}(1,0,0)=$ $\mathcal{O}(x-2,0,0)+\mathcal{O}(2,0,0)$ are valid and different provided $x>4$. $\mathcal{E}(4,0,0)=2^{k+1}+2=\left(2^{k}-1\right)+\left(2^{k}+1\right)=2+\left(2^{k+1}\right)$.
(iv) If $m=0=x$, then $\mathcal{E}(0, y, 0)=\mathcal{O}(0, y-1,0)+\mathcal{O}(0,1,0)=\mathcal{O}(0, y-$ $2,0)+\mathcal{O}(0,2,0)$ are valid and different provided $y>4$. The other cases:

$$
\begin{aligned}
& \mathcal{E}(0,1,0)=\mathcal{O}(1,0,0)+\mathcal{O}\left(2^{k}-1,0,0\right)=\mathcal{O}(2,0,0)+\mathcal{O}\left(2^{k}-2,0,0\right) \\
& \mathcal{E}(0,2,0)=\mathcal{O}(2,1,0)+\mathcal{O}\left(2^{k}-2,0,0\right)=\mathcal{O}(4,1,0)+\mathcal{O}\left(2^{k}-4,0,0\right) \\
& \mathcal{E}(0,3,0)=\mathcal{O}(1,2,0)+\mathcal{O}\left(2^{k}-1,0,0\right)=\mathcal{O}(0,2,0)+\mathcal{O}(0,1,0) \\
& \mathcal{E}(0,4,0)=\mathcal{O}(4,2,0)+\mathcal{O}\left(2^{k}-4,1,0\right)=\mathcal{O}(0,1,0)+\mathcal{O}(0,3,0)
\end{aligned}
$$

(v) If $m>0, x=0$, then y is not zero, $\mathcal{E}(0, y, m)=\mathcal{O}\left(2^{k}-y, y-\right.$ $1, m)+\mathcal{O}(y, 0,0)=\mathcal{O}\left(2^{k}-y, y-1,0\right)+\mathcal{O}(y, 0, m)$.
(vi) If $m>0, y=0$, then x is not zero, $\mathcal{E}(x, 0, m)=\mathcal{O}\left(x-1,2^{k}-\right.$ $x, m-1)+\mathcal{O}(0, x, 0)=\mathcal{O}(x-1,0, m)+\mathcal{O}(1,0,0)$ provided $x>1$. $\mathcal{E}(1,0, m)=\mathcal{O}(0,1,0)+\mathcal{O}\left(0,2^{k}-1, m-1\right)=\mathcal{O}(0,2,0)+\mathcal{O}\left(0,2^{k}-\right.$ $2, m-1)$.

The conclusion from Lemma Th 2 is that every even number greater than $2^{k+1}+2$ is the sum of members of B either in no way, or in two or more ways. We also see $2^{k+1}+2=(2)+\left(2^{k+1}\right)=\left(2^{k}-1\right)+\left(2^{k}+3\right)$, while $2^{k+1}=2^{k}-1+$ $2^{k}+1$. No even number less than 2^{k+1} is the sum of two different $\mathcal{O}(x, y, m)$ numbers because the smallest two are $2^{k}-1$ and $2^{k}+1$. Therefore we need bother only with odd members of B.

By taking this together with lemmata 2 and 3 , the theorem is proved.

References

[F] S. R. Finch, Patterns in 1-additive sequences, Exp. Math. 1(1992), 57-63.
[OEIS] N.J.A. Sloane, Online Enyclopedia of Integer Sequences,
www.research.att.com/~njas/sequences/Seis.html
[S] R. Stephan, Prove or disprove. 100 Conjectures from the OEIS, preprint, math.CO/0409509

