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Abstract. We give a characterization for numbers in a class of 1-
additive sequences and thus solve a conjecture by Stephan and, more
generally, a problem posed by Finch.

1-additive sequences have the definition “an is smallest number which
is uniquely aj + ak, j < k”. Our interest in these sequences was sparked
by Stephan[S] who observed that, for start values 2, 7, the first differences
seemed to have period 26 (this is sequence A003668 from [OEIS]). However,
Finch already proved[F] that all sequences with start values (2, v), v ≥ 5
have periodic differences. In the following, we will give an elementary proof
of a more general proposition, namely
Theorem 1. The 1-additive sequences with start values 2, 2k − 1, for k ≥ 3
are identical to sets {2, 2k+1}∪B, where B is defined to consist of numbers
of the form

2x+ 2k+1y + 2k − 3 + (22k+1 − 2)m,
where the conditions hold

0 ≤ x ≤ 2k − 1, 0 ≤ y ≤ 2k − 1,
x+ y > 0, m ≥ 0, x & y = 0,

(1)

and & denotes the bitwise-and operator.
As x and y are k-bit binary numbers, and the possible pairs of cor-

responding bits in the two numbers are (0, 0), (0, 1), and (1, 0) (with the
case x = y = 0 excluded), then from the theorem would follow two corol-
laries, stated already as conjectures by Finch, and also the first, in the
case k = 3, by Stephan.
Corollary 1. The 1-additive sequences with start values 2, 2k−1, for k ≥ 3
have differences with period 3k − 1.
Corollary 2. The span between periods of first differences of 1-additive
sequences with start values 2, 2k − 1, for k ≥ 3 is 22k+1 − 2.

In the rest of the paper, we will prove the theorem using four lemmata,
where the last one coincides with Conjecture 2 in Finch’s paper[F].
Definition. Let

O(x, y,m) = O(x, y,m; k) = 2x+ 2k+1y + 2k − 3 + (22k+1 − 2)m

E(x, y,m) = O(x, y,m) + 2k − 3.
1
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First see that, if the conditions in (1) hold, then every odd number 2k − 1
and above has a unique representation O(x, y,m). Also, every even num-
ber 2k+1 − 4 and above has a unique representation in the form E(x, y,m).
Lemma 1. Suppose x & y = 0, x > 0, y > 0. Then exactly one of (x −
1) & y, x &(y − 1) is zero.

Proof. Let c be the position of the lowest bit set in both x or y. If the c-th
bit of x is set, then (x−1) & y = 0 but x &(y−1) 6= 0. Exchange x and y. �

Lemma 2. For any number b ∈ B, exactly one of b − 2 and b − 2k+1 is
in B.

Proof. Let b = O(x, y,m) ∈ B,

(i) if x > 0 and y > 0, then b − 2 = O(x − 1, y,m) and b − 2k+1 =
O(x, y − 1,m). Since b ∈ B, x & y = 0, so by Lemma 1, one of b− 2
and b− 2k+1 is in B;

(ii) if x = 0, y = 1, then b − 2 = O(2k − 1, 0,m) ∈ B, b − 2k+1 =
O(0, 0,m) = O(2k − 1, 2k − 1,m− 1) 6∈ B;

(iii) if x = 1, y = 0, then b − 2 = O(0, 0,m) 6∈ B, b − 2k+1 = O(0, 2k −
1,m− 1) ∈ B;

(iv) if x = 0, y > 1, then b − 2 = O(2k − 1, y − 1,m) 6∈ B, b − 2k+1 =
O(0, y − 1,m) ∈ B;

(v) if x > 1, y = 0, then b − 2 = O(x − 1, 0,m) ∈ B, b − 2k+1 =
O(x− 1, 2k − 1,m− 1) 6∈ B.

�

Lemma 3. If an odd number b is not in B, then either both or neither
of b− 2 and b− 2k+1 is in B.

Proof. Let b = O(x, y,m) 6∈ B. Then x & y is not zero (note the illegal
case x = y = 0 resolves to O(2k − 1, 2k − 1,m− 1)).

(i) If x & y has a single nonzero bit, and both x and y are multiples
of x & y, then both x &(y − 1) and (x − 1) & y are zero, so b − 2
and b− 2k+1 are both in B.

(ii) If x & y has at least two nonzero bits, then the higher of the two bits
is still nonzero in x− 1 and y − 1, so (x− 1) & y and x &(y − 1) are
both nonzero, and b− 2 and b− 2k+1 are neither in B.

(iii) x & y has one nonzero bit, but at least one smaller bit is set in x
or y: If a smaller bit is set in x, then x − 1 has the x & y bit set,
so (x − 1) & y > 0. If no smaller bit is set on in x, then all smaller
bits are set in x − 1, and at least one of these smaller bits is set
in y, so (x − 1) & y > 0. Therefore (x − 1) & y > 0, whether x has
any smaller bits set or not, so b − 2 = O(x − 1, y,m) is not in B.
Likewise, b− 2k+1 is not in B.

�
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Lemma 4. If a < b ∈ B, and a + b > 2k+1 + 2, then there are c < d ∈ B,
with c 6= a, and a+ b = c+ d.

Proof. Let the sums

S1 = O(x, 0, 0) +O(0, y,m), S2 = O(x, 0,m) +O(0, y, 0),

S3 = O(2k − y − 1, y, 0) +O(x+ y + 1− 2k, 0,m), if x+ y ≥ 2k,

S4 = O(2k − y, y − 1, 0) +O(x+ y, 0,m), if x+ y < 2k.

(i) If none of x, y,m is zero, then E(x, y,m) = S1 = S2, and the sums
have different terms.

(ii) If m = 0, and neither x nor y is zero, then E(x, y,m) = S1 =
{S3 or S4}, and the sums have different terms.

(iii) If m = 0 = y, then E(x, 0, 0) = O(x − 1, 0, 0) + O(1, 0, 0) =
O(x − 2, 0, 0) + O(2, 0, 0) are valid and different provided x > 4.
E(4, 0, 0) = 2k+1 + 2 = (2k − 1) + (2k + 1) = 2 + (2k+1).

(iv) If m = 0 = x, then E(0, y, 0) = O(0, y− 1, 0) +O(0, 1, 0) = O(0, y−
2, 0) +O(0, 2, 0) are valid and different provided y > 4. The other
cases:

E(0, 1, 0) = O(1, 0, 0) +O(2k − 1, 0, 0) = O(2, 0, 0) +O(2k − 2, 0, 0)

E(0, 2, 0) = O(2, 1, 0) +O(2k − 2, 0, 0) = O(4, 1, 0) +O(2k − 4, 0, 0)

E(0, 3, 0) = O(1, 2, 0) +O(2k − 1, 0, 0) = O(0, 2, 0) +O(0, 1, 0)

E(0, 4, 0) = O(4, 2, 0) +O(2k − 4, 1, 0) = O(0, 1, 0) +O(0, 3, 0)

(v) If m > 0, x = 0, then y is not zero, E(0, y,m) = O(2k − y, y −
1,m) +O(y, 0, 0) = O(2k − y, y − 1, 0) +O(y, 0,m).

(vi) If m > 0, y = 0, then x is not zero, E(x, 0,m) = O(x − 1, 2k −
x,m− 1) +O(0, x, 0) = O(x− 1, 0,m) +O(1, 0, 0) provided x > 1.
E(1, 0,m) = O(0, 1, 0) +O(0, 2k − 1,m− 1) = O(0, 2, 0) +O(0, 2k −
2,m− 1).

�

The conclusion from Lemma 4 is that every even number greater than
2k+1+2 is the sum of members of B either in no way, or in two or more ways.
We also see 2k+1+2 = (2)+(2k+1) = (2k−1)+(2k+3), while 2k+1 = 2k−1+
2k+1. No even number less than 2k+1 is the sum of two different O(x, y,m)
numbers because the smallest two are 2k − 1 and 2k + 1. Therefore we need
bother only with odd members of B.

By taking this together with lemmata 2 and 3, the theorem is proved.
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