login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100237
Secondary diagonal of triangle A100235 divided by row number: a(n) = A100235(n+1,n)/(n+1) for n >= 0.
3
1, 4, 21, 109, 566, 2939, 15261, 79244, 411481, 2136649, 11094726, 57610279, 299146121, 1553340884, 8065850541, 41882593589, 217478818486, 1129276686019, 5863862248581, 30448587928924, 158106801893201, 820982597394929, 4263019788867846, 22136081541734159
OFFSET
0,2
COMMENTS
G.f. equals the ratio of the g.f.s of any two adjacent diagonals of triangle A100235.
a(n) is the number of compositions of n when there are 4 types of 1 and 5 types of other natural numbers. - Milan Janjic, Aug 13 2010
FORMULA
a(n) = 5*a(n-1) + a(n-2) for n>1, with a(0)=1, a(1)=4.
G.f.: (1-x)/(1-5*x-x^2).
Numerators in continued fraction [1, 4, 5, 5, 5, ...]. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596433..., the inradius of a right triangle with legs 2 and 5. n-th convergent (n>0) to [1, 4, 5, 5, 5, ...] = A100237(n)/A052918(n), the first few being 1/1, 4/5, 21/26, 109/135, ... - Gary W. Adamson, Dec 21 2007
If p[1]=4, p[i]=5, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (2^(-1-n)*((5-sqrt(29))^n*(-3+sqrt(29)) + (3+sqrt(29))*(5+sqrt(29))^n))/sqrt(29). - Colin Barker, Oct 13 2015
MAPLE
a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
PROG
(PARI) a(n)=polcoeff((1-x)/(1-5*x-x^2)+x*O(x^n), n)
(PARI) Vec((1-x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
CROSSREFS
First differences of A052918.
Cf. A052918.
Sequence in context: A083425 A377111 A183367 * A117381 A010908 A136786
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 30 2004
STATUS
approved