OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
a(n) = (1/2)*n*(33*n^2 - 41*n + 10).
G.f.: x*(1 + 56*x + 42*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=60, a(3)=276, a(4)=748. - Harvey P. Dale, Dec 09 2012
E.g.f.: x*(2 + 58*x + 33*x^2)*exp(x)/2. - G. C. Greubel, Oct 18 2018
MAPLE
MATHEMATICA
Table[(n(33n^2-41n+10))/2, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 60, 276, 748}, 40] (* Harvey P. Dale, Dec 09 2012 *)
PROG
(Magma) [(1/6)*(99*n^3-123*n^2+30*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) vector(50, n, n*(33*n^2 - 41*n + 10)/2) \\ G. C. Greubel, Oct 18 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
STATUS
approved