login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bell(2n)*(2n-1)!!, where Bell are the Bell numbers A000110.
0

%I #15 Dec 25 2017 04:02:47

%S 1,2,45,3045,434700,109596375,43800340815,25797179878470,

%T 21243510135522675,23503974546075598575,33865310276598741840900,

%U 61964234361152712204340725,141027420945032510510113517025

%N Bell(2n)*(2n-1)!!, where Bell are the Bell numbers A000110.

%C This sequence arises in the normal ordering problem the exponential of square of boson number operator.

%F a(n) = Bell(2*n)*(2*n)!/(2^n*n!) = A001147(n)*A000110(2*n).

%F E.g.f.: G(x) = Sum_{k>=0} exp((k*x)^2/2-1)/k!; a(n) = subs(x=0, (d^(2n)/dx^(2n))G(x)).

%t Array[BellB[2 #] (2 # - 1)!! &, 13, 0] (* _Michael De Vlieger_, Dec 24 2017 *)

%o (PARI) a(n)=round(exp(-1)*suminf(k=0,k^(2*n)/k!))*(2*n)!/(2^n*n!) \\ _Charles R Greathouse IV_, Nov 06 2011

%Y Cf. A000110, A001147.

%K nonn

%O 0,2

%A _Karol A. Penson_, Nov 03 2004