login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099596
Primes p such that the denominator of the poly-Bernoulli number B(2,n) equals 8p.
0
3, 5, 11, 17, 23, 47, 59, 83, 107, 137, 167, 179, 227, 239, 257, 263, 317, 347, 359, 383, 431, 443, 467, 479, 503, 557, 563, 587, 647, 659, 719, 797, 827, 839, 857, 863, 887, 983, 1019, 1091, 1097, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499
OFFSET
1,1
COMMENTS
p such that A027644(p) = 8p.
MATHEMATICA
f[n_] := Denominator[(-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]]; l = {}; Do[p = Prime[n]; If[f[p] == 8p, AppendTo[l, p]], {n, 240}]; l (* Robert G. Wilson v, Oct 28 2004 *)
CROSSREFS
Sequence in context: A293711 A155938 A158318 * A200748 A063693 A258713
KEYWORD
nonn
AUTHOR
Ralf Stephan, Oct 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Oct 28 2004
STATUS
approved