login
A099596
Primes p such that the denominator of the poly-Bernoulli number B(2,n) equals 8p.
0
3, 5, 11, 17, 23, 47, 59, 83, 107, 137, 167, 179, 227, 239, 257, 263, 317, 347, 359, 383, 431, 443, 467, 479, 503, 557, 563, 587, 647, 659, 719, 797, 827, 839, 857, 863, 887, 983, 1019, 1091, 1097, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499
OFFSET
1,1
COMMENTS
p such that A027644(p) = 8p.
MATHEMATICA
f[n_] := Denominator[(-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]]; l = {}; Do[p = Prime[n]; If[f[p] == 8p, AppendTo[l, p]], {n, 240}]; l (* Robert G. Wilson v, Oct 28 2004 *)
CROSSREFS
Sequence in context: A293711 A155938 A158318 * A200748 A063693 A258713
KEYWORD
nonn
AUTHOR
Ralf Stephan, Oct 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Oct 28 2004
STATUS
approved