login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099358 a(n) = sum of digits of k^4 as k runs from 1 to n. 0
1, 8, 17, 30, 43, 61, 68, 87, 105, 106, 122, 140, 162, 184, 202, 227, 246, 273, 283, 290, 317, 339, 370, 397, 422, 459, 477, 505, 530, 539, 561, 592, 619, 644, 663, 699, 727, 752, 770, 783, 814, 841, 866, 903, 921, 958, 1001, 1028, 1059, 1072, 1099, 1124, 1161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A055565.

LINKS

Table of n, a(n) for n=1..53.

FORMULA

a(n) = a(n-1) + sum of decimal digits of n^4.

a(n) = sum(k=1, n, sum(m=0, floor(log(k^4)), floor(10((k^4)/(10^(((floor(log(k^4))+1))-m)) - floor((k^4)/(10^(((floor(log(k^4))+1))-m))))))).

General formula: a(n)_p = sum(k=1, n, sum(m=0, floor(log(k^p)), floor(10((k^p)/(10^(((floor(log(k^p))+1))-m)) - floor ((k^p)/(10^(((floor(log(k^p))+1))-m))))))). Here a(n)_p is a sum of digits of k^p from k=1 to n.

EXAMPLE

a(3) = sum_digits(1^4) + sum_digits(2^4) + sum_digits(3^4) = 1 + 7 + 9 = 17.

MATHEMATICA

f[n_] := Block[{s = 0, k = 1}, While[k <= n, s = s + Plus @@ IntegerDigits[k^4]; k++ ]; s]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Nov 18 2004 *)

Accumulate[Table[Total[IntegerDigits[n^4]], {n, 60}]] (* Harvey P. Dale, Jun 08 2021 *)

CROSSREFS

Cf. k^1 in A037123, k^2 in A071317 & k^3 in A071121.

Sequence in context: A028884 A322473 A247117 * A077222 A077221 A226601

Adjacent sequences:  A099355 A099356 A099357 * A099359 A099360 A099361

KEYWORD

nonn,easy,base

AUTHOR

Yalcin Aktar, Nov 16 2004

EXTENSIONS

Edited and extended by Robert G. Wilson v, Nov 18 2004

Existing example replaced with a simpler one by Jon E. Schoenfield, Oct 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:10 EST 2021. Contains 349530 sequences. (Running on oeis4.)