login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099358
a(n) = sum of digits of k^4 as k runs from 1 to n.
0
1, 8, 17, 30, 43, 61, 68, 87, 105, 106, 122, 140, 162, 184, 202, 227, 246, 273, 283, 290, 317, 339, 370, 397, 422, 459, 477, 505, 530, 539, 561, 592, 619, 644, 663, 699, 727, 752, 770, 783, 814, 841, 866, 903, 921, 958, 1001, 1028, 1059, 1072, 1099, 1124, 1161
OFFSET
1,2
COMMENTS
Partial sums of A055565.
FORMULA
a(n) = a(n-1) + sum of decimal digits of n^4.
a(n) = sum(k=1, n, sum(m=0, floor(log(k^4)), floor(10((k^4)/(10^(((floor(log(k^4))+1))-m)) - floor((k^4)/(10^(((floor(log(k^4))+1))-m))))))).
General formula: a(n)_p = sum(k=1, n, sum(m=0, floor(log(k^p)), floor(10((k^p)/(10^(((floor(log(k^p))+1))-m)) - floor ((k^p)/(10^(((floor(log(k^p))+1))-m))))))). Here a(n)_p is a sum of digits of k^p from k=1 to n.
EXAMPLE
a(3) = sum_digits(1^4) + sum_digits(2^4) + sum_digits(3^4) = 1 + 7 + 9 = 17.
MATHEMATICA
f[n_] := Block[{s = 0, k = 1}, While[k <= n, s = s + Plus @@ IntegerDigits[k^4]; k++ ]; s]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Nov 18 2004 *)
Accumulate[Table[Total[IntegerDigits[n^4]], {n, 60}]] (* Harvey P. Dale, Jun 08 2021 *)
CROSSREFS
Cf. k^1 in A037123, k^2 in A071317 & k^3 in A071121.
Sequence in context: A028884 A322473 A247117 * A077222 A077221 A226601
KEYWORD
nonn,easy,base
AUTHOR
Yalcin Aktar, Nov 16 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 18 2004
Existing example replaced with a simpler one by Jon E. Schoenfield, Oct 20 2013
STATUS
approved