|
|
A099187
|
|
Iterated dodecahedral numbers, starting with a(1) = 20.
|
|
1
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This need not start with Dod(2) = 20. For example, if a(1) = Dod(3) = 84, then a(2) = Dod(Dod(3)) = Dod(84) = 84*(9*84^2 - 9*84 + 2)/2 = 2635500; a(3) = Dod(Dod(Dod(3))) = Dod(2635500) = 82376134843569010500. The core sequence is not to be confused with Rhombic dodecahedral numbers.
|
|
REFERENCES
|
H. S. M. Coxeter, "Regular Polytopes", New York: Dover, 1973.
J. V. Post, "Iterated Triangular Numbers", preprint.
|
|
LINKS
|
Michel Marcus, Table of n, a(n) for n = 0..6
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
|
|
FORMULA
|
From the definition of dodecahedral numbers, for n>1, Dod(n) = n*(9*n^2-9*n+2)/2 we have a(0) = 1, a(1) = Dod(2) = 20; a(k+1) = Dod(a(k)).
|
|
EXAMPLE
|
a(0) = 1;
a(1) = Dod(2) = the 2nd dodecahedral number = 2*(9*2^2-9*2+2)/2 = 20;
a(2) = Dod(Dod(2)) = the 20th dodecahedral number = 20*(9*20^2-9*20+2)/2 = 34220.
|
|
MATHEMATICA
|
Dod[n_]:= n*(9*n^2-9*n+2)/2; a[n_]:= If[n==0, Dod[1], If[n==1, Dod[2], Dod[a[n-1]]]]; Table[a[n], {n, 0, 4}] (* G. C. Greubel, Mar 22 2019 *)
|
|
PROG
|
(PARI) dod(n) = n*(9*n^2-9*n+2)/2;
a(n) = if (n==0, 1, if (n==1, dod(2), dod(a(n-1)))); \\ Michel Marcus, Dec 14 2015
|
|
CROSSREFS
|
Cf. A007501, A006566.
Sequence in context: A348144 A060618 A064487 * A129041 A129040 A159370
Adjacent sequences: A099184 A099185 A099186 * A099188 A099189 A099190
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Nov 15 2004
|
|
STATUS
|
approved
|
|
|
|