login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).
3

%I #26 Aug 23 2024 08:37:51

%S 2,3,9,28,30,31,51,127,208

%N Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).

%C Number of digits of primes corresponding to the nine known terms of this sequence are respectively 2,3,9,39,42,44,84,244,441.

%C If it exists, a(10) > 10362. - _J.W.L. (Jan) Eerland_, Aug 14 2022

%C If it exists, a(10) > 25000. - _Michael S. Branicky_, Aug 23 2024

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_008.htm">Puzzle 8. Primes by Listing</a>, The Prime Puzzles & Problems connection.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%e 9 is in the sequence because phi(9).phi(8).phi(7).phi(6).phi(5).phi(4).phi(3).phi(2).phi(1) = 646242211 is prime.

%t Module[{nn=210,eph},eph=EulerPhi[Range[nn]];Position[Table[FromDigits[ Flatten[ IntegerDigits[Reverse[Take[eph,n]]]]],{n,nn}],_?PrimeQ]]// Flatten (* _Harvey P. Dale_, Apr 21 2020 *)

%t ParallelTable[If[PrimeQ[ToExpression[StringJoin[ToString[#]&/@Reverse[Table[EulerPhi[k],{k,1,n}]]]]],n,Nothing],{n,1,10^4}]//.{}->Nothing (* _J.W.L. (Jan) Eerland_, Aug 15 2022 *)

%Y Cf. A046035, A099077, A099078, A099080.

%K base,more,nonn

%O 1,1

%A _Farideh Firoozbakht_, Oct 23 2004