login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099079
Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).
3
2, 3, 9, 28, 30, 31, 51, 127, 208
OFFSET
1,1
COMMENTS
Number of digits of primes corresponding to the nine known terms of this sequence are respectively 2,3,9,39,42,44,84,244,441.
If it exists, a(10) > 10362. - J.W.L. (Jan) Eerland, Aug 14 2022
If it exists, a(10) > 25000. - Michael S. Branicky, Aug 23 2024
LINKS
Carlos Rivera, Puzzle 8. Primes by Listing, The Prime Puzzles & Problems connection.
Eric Weisstein's World of Mathematics, Integer Sequence Primes
EXAMPLE
9 is in the sequence because phi(9).phi(8).phi(7).phi(6).phi(5).phi(4).phi(3).phi(2).phi(1) = 646242211 is prime.
MATHEMATICA
Module[{nn=210, eph}, eph=EulerPhi[Range[nn]]; Position[Table[FromDigits[ Flatten[ IntegerDigits[Reverse[Take[eph, n]]]]], {n, nn}], _?PrimeQ]]// Flatten (* Harvey P. Dale, Apr 21 2020 *)
ParallelTable[If[PrimeQ[ToExpression[StringJoin[ToString[#]&/@Reverse[Table[EulerPhi[k], {k, 1, n}]]]]], n, Nothing], {n, 1, 10^4}]//.{}->Nothing (* J.W.L. (Jan) Eerland, Aug 15 2022 *)
CROSSREFS
KEYWORD
base,more,nonn
AUTHOR
Farideh Firoozbakht, Oct 23 2004
STATUS
approved