login
A099048
Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0).
1
32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212, 230, 248, 266, 284, 302, 320, 338, 356, 374, 392, 410, 428, 446, 464, 482, 500, 518, 536, 554, 572, 590, 608, 626, 644, 662, 680, 698, 716, 734, 752, 770, 788, 806, 824, 842, 860, 878, 896, 914, 932, 950
OFFSET
1,1
COMMENTS
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+1)*2^(m-1)+2*(n-1).
Also, temperatures in Fahrenheit that convert to Celsius as nonnegative multiples of 10. - J. Lowell, Jul 28 2007
LINKS
Tanya Khovanova, Recursive Sequences
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
FORMULA
a(n) = 18*n+14.
a(n) = 2*A017245(n).
MATHEMATICA
Table[18n + 14, {n, 52}] (* Robert G. Wilson v, Nov 16 2004 *)
PROG
(Magma) [18*n+14: n in [1..60]]; // Vincenzo Librandi, Jul 25 2011
CROSSREFS
Cf. A017245.
Sequence in context: A256521 A037008 A316943 * A176542 A346917 A343154
KEYWORD
nonn,easy
AUTHOR
Sergey Kitaev, Nov 13 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 16 2004
STATUS
approved