login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098949
Numbers where 9 is the only odd decimal digit.
2
9, 29, 49, 69, 89, 90, 92, 94, 96, 98, 99, 209, 229, 249, 269, 289, 290, 292, 294, 296, 298, 299, 409, 429, 449, 469, 489, 490, 492, 494, 496, 498, 499, 609, 629, 649, 669, 689, 690, 692, 694, 696, 698, 699, 809, 829, 849, 869, 889, 890, 892, 894, 896, 898
OFFSET
1,1
COMMENTS
This is a regular language in base 10. - Charles R Greathouse IV, Oct 05 2011
The number of terms of this sequence that are smaller than 10^n is n*5^(n-1). - Stefan Steinerberger, Jun 06 2006
Any number of 9s is permitted. - Harvey P. Dale, May 07 2019
MATHEMATICA
Select[Range[1000], DigitCount[ # ][[1]] == 0 && DigitCount[ # ][[3]] == 0 && DigitCount[ # ][[5]] == 0 && DigitCount[ # ][[7]] == 0 && DigitCount[ # ][[9]] >0 &] (* Stefan Steinerberger, Jun 06 2006; corrected by Harvey P. Dale, May 07 2019 *)
Select[Range[1000], Union[Select[IntegerDigits[#], OddQ]]=={9}&] (* Harvey P. Dale, May 07 2019 *)
PROG
(Perl) for (0..1000) {
print "$_, " if (/^[024689]*9[024689]*$/)
} # Charles R Greathouse IV, Oct 05 2011
(Python)
def ok(n): return set(str(n)) & set("13579") == set("9")
print(list(filter(ok, range(899)))) # Michael S. Branicky, Sep 29 2021
CROSSREFS
Sequence in context: A032700 A322946 A350963 * A031296 A146869 A129397
KEYWORD
base,easy,nonn
AUTHOR
Eric Angelini, Oct 21 2004
EXTENSIONS
More terms from Stefan Steinerberger, Jun 06 2006
STATUS
approved