Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 08 2022 08:45:15
%S 0,1,2,6,17,50,148,441,1318,3946,11825,35454,106328,318929,956698,
%T 2869950,8609617,25828474,77484812,232453449,697358750,2092073666,
%U 6276216817,18828643686,56485920112,169457742625,508373199218,1525119551286
%N a(n) = (3^n + phi^(n-1) + (-phi)^(1-n)) / 5, where phi denotes the golden ratio A001622.
%C Sums of antidiagonals of A090888;
%C Partial sums of A099159;
%C a(n) = A000045(n) + A094688(n-1);
%C For n > 2, a(n) = 3a(n-1) - A000045(n-3);
%C For n > 3, a(n) = 3^2a(n-2) - A000285(n-4);
%C For n > 4, a(n) = 3^3a(n-3) - A022383(n-5);
%C Lim_{n -> oo} a(n) / a(n-1) = 3.
%C a(n) = A101220(1,3,n). - _Ross La Haye_, Dec 15 2004
%C Form an array with m(0,n) = A000045(n), the Fibonacci numbers, and m(i,j) = Sum_{k<i} m(k,j) + Sum_{k<j} m(i,k), which is the sum of the terms above m(i,j) plus the sum of the terms to the left of m(i,j). The sum of the terms in antidiagonal(n) = a(n+1). - _J. M. Bergot_, May 27 2013
%H Vincenzo Librandi, <a href="/A098703/b098703.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-3).
%F a(n) = (((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n*sqrt(5))) + ((3^n - (((1 + sqrt(5)) / 2)^(n+1) + ((1 - sqrt(5)) / 2)^(n+1))) / 5); a(n) = (3^n + (((1 + sqrt(5)) / 2)^(n-1) + ((1 - sqrt(5)) / 2)^(n-1))) / 5.
%F Let Luc(n) denote the n-th Lucas number [A000032] and Fib(n) denote the n-th Fibonacci number (A000045). Then a(n) = (3^n + Luc(n-1)) / 5; a(n) = Fib(n) + ((3^n - Luc(n+1)) / 5); a(n) = (3^n + Fib(n) + Fib(n-2)) / 5; a(n) = (3^n + 4Fib(n) - Fib(n+2)) / 5; a(n) = Sum_{k=0...n-1} Fib(k)*3^(n-k-1) - Fib(k-2)*2^(n-k-1), ... and so on.
%F a(n) = 4*a(n-1) - 2*a(n-2) - 3*a(n-3).
%F Binomial transform of unsigned A084178. Binomial transform of signed A084178 gives the Fibonacci oblongs (A001654). - _Ross La Haye_, Dec 21 2004
%F G.f.: x*(1-2*x)/((-1+3*x)*(-1+x+x^2)). - _Ross La Haye_, Aug 09 2005
%F a(0) = 0, a(1) = 1, a(n) = a(n-1) + a(n-2) + 3^(n-2) for n > 1. - _Ross La Haye_, Aug 20 2005
%F Binomial transform of A052964 beginning 0,1,0,3,1,10,... - _Ross La Haye_, May 31 2006
%e a(2) = 2 because 3^2 = 9, Luc(1) = 1 and (9 + 1) / 5 = 2.
%t f[n_] := (3^n + Fibonacci[n] + Fibonacci[n - 2])/5; Table[ f[n], {n, 0, 27}] (* _Robert G. Wilson v_, Nov 04 2004 *)
%t LinearRecurrence[{4, -2, -3}, {0, 1, 2}, 30] (* _Jean-François Alcover_, Feb 17 2018 *)
%o (Magma) I:=[0,1,2]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-3*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 18 2018
%Y Cf. A001622, A000032, A000045, A090888, A099159, A094688, A000285, A022383, A000244.
%K nonn
%O 0,3
%A _Ross La Haye_, Oct 27 2004
%E More terms from _Robert G. Wilson v_, Nov 04 2004
%E More terms from _Ross La Haye_, Dec 21 2004