Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 17 2023 07:11:16
%S 0,1,2,3,5,9,11,24,84,221,1314,2952,20016,51054
%N Numbers k such that R_k + 2 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
%C Also numbers k such that (10^k + 17)/9 is prime.
%C The corresponding values R_k + 2 are primes of the form "(n-1) ones followed by a three"; zero is a degenerate case. Related to the base-10 repunit primes.
%C a(15) > 10^5. - _Robert Price_, Oct 12 2014
%C By Kamada link, a(15) > 4*10^5. - _Jeppe Stig Nielsen_, Jan 17 2023
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/11113.htm#prime">Prime numbers of the form 11...113</a>.
%H Henri Lifchitz and Renaud Lifchitz, PRP Top, <a href="http://www.primenumbers.net/prptop/searchform.php?form=%2810%5Ek%2B17%29%2F9">Search output for (10^k+17)/9</a>
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>
%F a(n) = A056654(n-1) + 1.
%e 11113 = ((10^5)+17)/9 and 11113 is prime.
%p A097683:=n->`if`((10^n+17 mod 9) = 0 and isprime(floor((10^n+17)/9)),n,NULL): seq(A097683(n), n=0..10^3); # _Wesley Ivan Hurt_, Oct 12 2014
%t Do[ If[ PrimeQ[(10^n - 1)/9 + 2], Print[n]], {n, 0, 5951}] (* _Robert G. Wilson v_, Oct 15 2004 *)
%Y Cf. A002275, A004023, A056654, A097684, A097685.
%K more,nonn
%O 1,3
%A _Carl R. White_ and Julien Peter Benney (jpbenney(AT)ftml.net), Aug 19 2004
%E a(11)-a(12) from _Robert G. Wilson v_, Oct 15 2004
%E Edited by _N. J. A. Sloane_, Apr 02 2009, at the suggestion of _Farideh Firoozbakht_
%E a(13) from Kamada link by _Ray Chandler_, Dec 23 2010
%E a(14) from _Robert Price_, Oct 12 2014