|
|
A097648
|
|
a(n) is the least non-palindromic number m such that phi(m)=phi(reversal(m))=4*10^(n+2), or 0 if no such number exists.
|
|
1
|
|
|
10040, 110440, 1014040, 11154440, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It seems that 10 divides all terms of this sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..49.
C. Rivera, f(p)=f(p') , puzzle 282
|
|
FORMULA
|
a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m)
|
|
EXAMPLE
|
a(4)=11154440 because phi(11154440)=phi(04445111)=4000000 and 11154440 is the earliest non-palindromic number with this property.
|
|
MATHEMATICA
|
a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ]; m); Do[Print[a[n]], {n, 4}]
|
|
CROSSREFS
|
Subsequence of A097647.
Sequence in context: A251136 A213318 A346026 * A188663 A250711 A223431
Adjacent sequences: A097645 A097646 A097647 * A097649 A097650 A097651
|
|
KEYWORD
|
base,nonn,more
|
|
AUTHOR
|
Farideh Firoozbakht, Sep 04 2004
|
|
EXTENSIONS
|
Better definition and more terms from David Wasserman, Dec 28 2007
a(27)-a(49) from Max Alekseyev, Oct 17 2008; Aug 15 2013; Jun 14 2022
|
|
STATUS
|
approved
|
|
|
|