login
A097645
Numbers k such that k = sigma(phi(k) + pi(k)).
2
1, 6, 54, 78, 1296, 1482, 6480, 6552, 14040, 20160, 36936, 1273896
OFFSET
1,2
COMMENTS
Does this sequence have any odd terms > 1? There is no other term up to 3*10^7.
a(13) > 10350781218. - J.W.L. (Jan) Eerland, Dec 25 2021
EXAMPLE
1273896 is in the sequence because pi(1273896) = 98190, phi(1273896) = 391680, and sigma(98190+391680) = 1273896.
MATHEMATICA
Do[If[n==DivisorSigma[1, EulerPhi[n]+PrimePi[n]], Print[n]], {n, 10000000}].
Parallelize[While[True, If[DivisorSigma[1, EulerPhi[n]+PrimePi[n]]==n, Print[n]]; n++]; n], n] (* J.W.L. (Jan) Eerland, Dec 25 2021 *)
PROG
(PARI) isok(k) = k == sigma(eulerphi(k) + primepi(k)); \\ Michel Marcus, Dec 25 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Farideh Firoozbakht, Sep 07 2004
STATUS
approved