login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097625
a(n) = Sum_{k=0..n} (-2)^k * binomial(2n-k,k) * (n-k)!.
1
-1, 0, 2, -4, 8, 0, 80, 544, 5248, 53504, 601344, 7339520, 96797696, 1371889664, 20797212672, 335835828224, 5755617771520, 104346351861760, 1995288143593472, 40135085601325056, 847203499270995968
OFFSET
1,3
COMMENTS
Permanent of certain n X 2 Toeplitz-(1,-1) matrices.
LINKS
A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Sem. Loth. Combin. B11b (1984) 82-94
MAPLE
A097625 := proc(n) add((-2)^k*(n-k)!*binomial(2*n-k, k), k=0..n) ; end proc:
seq(A097625(n), n=1..30) ; # R. J. Mathar, Sep 18 2011
CROSSREFS
Cf. A000271.
Sequence in context: A087570 A124221 A339415 * A371133 A010743 A072032
KEYWORD
sign
AUTHOR
Ralf Stephan, Sep 20 2004
STATUS
approved