OFFSET
0,6
COMMENTS
Row sums are the Motzkin numbers (A001006).
FORMULA
G.f. = 2/(2 - 2*z - t + t*z + t*sqrt(1 - 2*z - 3*z^2)).
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 3;
1, 7, 1;
1, 15, 5;
Row n has 1+floor(n/2) terms.
T(5,2)=5 because HU(D)U(D), U(D)HU(D), U(D)U(D)H, U(D)UH(D) and UH(D)U(D) are the only Motzkin paths of length 5 with 2 returns (shown between parentheses); here U=(1,1), H=(1,0) and D=(1,-1).
MAPLE
G:= 2/(2-2*z-t+t*z+t*sqrt(1-2*z-3*z^2)) : Gser:=simplify(series(G, z=0, 16)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser, z^n)) od: seq(seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)), n=0..15);
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Aug 30 2004
STATUS
approved