OFFSET
0,5
COMMENTS
T(n,k) = number of Motzkin paths of length n containing exactly k humps. (A hump is an upstep followed by 0 or more flatsteps followed by a downstep.)
LINKS
Yan Zhuang, A generalized Goulden-Jackson cluster method and lattice path enumeration, Discrete Mathematics 341.2 (2018): 358-379; arXiv:1508.02793 [math.CO], 2015-2018.
FORMULA
G.f.: ((-1 + 2*x - 2*x^2 + x^2*y + ((1 - 2*x)^2 + 2*x^2*(-1 + 2*x - 2*x^2)*y + x^4*y^2)^(1/2))/(2*(-1 + x)*x^2) = Sum_{n>=0, k>=0} a(n, k) x^n y^k satisfies x^2 A(x, y)^2 - ( x^2(1-y)/(1-x) + (1-x) )A(x, y) + 1 = 0.
T(n,k) = Sum_{i=1..n} binomial(n, 2*i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022
EXAMPLE
Example: Table begins
n|
-+------------------
0|1
1|1
2|1, 1
3|1, 3
4|1, 7, 1
5|1, 15, 5
6|1, 31, 18, 1
7|1, 63, 56, 7
8|1, 127, 160, 34, 1
T(5,2) = 5 counts FUDUD, UDFUD, UDUDF, UDUFD, UFDUD.
MATHEMATICA
a[n_, k_]/; k<0 || k>n/2 := 0; a[n_, 0]/; n>=0 := 1; a[n_, k_]/; 1<=k<=n := a[n, k] = a[n-1, k] + Sum[a[n-r, k-1], {r, 2, n}]+Sum[a[r-2, j]a[n-r, k-j], {r, 2, n}, {j, k}] (* This recurrence counts a(n, k) by first return to ground level. *)
PROG
(Maxima)
N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
T(n, k):=if k=0 then 1 else sum(binomial(n, 2*i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
David Callan, Aug 01 2004
STATUS
approved