login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097229
Triangle read by rows: number of Motzkin paths by length and by number of humps.
1
1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 5, 1, 31, 18, 1, 1, 63, 56, 7, 1, 127, 160, 34, 1, 1, 255, 432, 138, 9, 1, 511, 1120, 500, 55, 1, 1, 1023, 2816, 1672, 275, 11, 1, 2047, 6912, 5264, 1205, 81, 1, 1, 4095, 16640, 15808, 4797, 481, 13
OFFSET
0,5
COMMENTS
T(n,k) = number of Motzkin paths of length n containing exactly k humps. (A hump is an upstep followed by 0 or more flatsteps followed by a downstep.)
LINKS
Yan Zhuang, A generalized Goulden-Jackson cluster method and lattice path enumeration, Discrete Mathematics 341.2 (2018): 358-379; arXiv:1508.02793 [math.CO], 2015-2018.
FORMULA
G.f.: ((-1 + 2*x - 2*x^2 + x^2*y + ((1 - 2*x)^2 + 2*x^2*(-1 + 2*x - 2*x^2)*y + x^4*y^2)^(1/2))/(2*(-1 + x)*x^2) = Sum_{n>=0, k>=0} a(n, k) x^n y^k satisfies x^2 A(x, y)^2 - ( x^2(1-y)/(1-x) + (1-x) )A(x, y) + 1 = 0.
T(n,k) = Sum_{i=1..n} binomial(n, 2*i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022
EXAMPLE
Example: Table begins
n|
-+------------------
0|1
1|1
2|1, 1
3|1, 3
4|1, 7, 1
5|1, 15, 5
6|1, 31, 18, 1
7|1, 63, 56, 7
8|1, 127, 160, 34, 1
T(5,2) = 5 counts FUDUD, UDFUD, UDUDF, UDUFD, UFDUD.
MATHEMATICA
a[n_, k_]/; k<0 || k>n/2 := 0; a[n_, 0]/; n>=0 := 1; a[n_, k_]/; 1<=k<=n := a[n, k] = a[n-1, k] + Sum[a[n-r, k-1], {r, 2, n}]+Sum[a[r-2, j]a[n-r, k-j], {r, 2, n}, {j, k}] (* This recurrence counts a(n, k) by first return to ground level. *)
PROG
(Maxima)
N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
T(n, k):=if k=0 then 1 else sum(binomial(n, 2*i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */
CROSSREFS
Column k=2 is A001793.
Cf. A001263.
Sequence in context: A143470 A114580 A257597 * A097862 A097612 A136011
KEYWORD
nonn,tabf
AUTHOR
David Callan, Aug 01 2004
STATUS
approved