The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097279 Alternating-harmonic primes. 0
 5, 11, 23, 59, 67, 83, 89, 101, 107, 109, 127, 163, 167, 197, 229, 233, 251, 283, 311, 317, 349, 421, 491, 557, 577, 643, 673, 683, 719, 727, 761, 827, 1009, 1061, 1129, 1163, 1193, 1231, 1327, 1373 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These primes, analogous to the harmonic primes in A092101, divide exactly one term of A058313, the numerators of the alternating harmonic numbers. It can be shown that for prime p > 3, if p = 6k-1, then p divides A058313(4k-1), otherwise if p = 6k+1, then p divides A058313(4k). Much of the analysis by Eswarathasan and Levine applies to alternating harmonic sums. REFERENCES A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257. LINKS MATHEMATICA maxPrime=1000; lst={}; Do[p=Prime[n]; cnt=0; s=0; i=1; While[s=s+(-1)^(i-1)/i; If[Mod[Numerator[s], p]==0, cnt++ ]; cnt<2&&i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 12:55 EDT 2021. Contains 343971 sequences. (Running on oeis4.)