login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097185 Row sums of triangle A097181, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097182(y)^(n+1), where R_n(1/2) = 8^n for all n>=0. 3
1, 15, 232, 3627, 57016, 899298, 14216560, 225110307, 3568890328, 56635884470, 899474459280, 14294357356110, 227286593929136, 3615608476770340, 57538659207907552, 915981394162628387, 14586262906867731096 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..825

FORMULA

G.f.: A(x) = 2/((1-16*x) + (1-16*x)^(7/8)).

MAPLE

seq(coeff(series(2/((1-16*x) + (1-16*x)^(7/8)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Sep 17 2019

MATHEMATICA

CoefficientList[Series[2/((1-16*x) +(1-16*x)^(7/8)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)

PROG

(PARI) a(n)=polcoeff(2/((1-16*x)+(1-16*x+x*O(x^n))^(7/8)), n, x)

(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/((1-16*x) + (1-16*x)^(7/8)) )); // G. C. Greubel, Sep 17 2019

(Sage)

def A097185_list(prec):

    P.<x> = PowerSeriesRing(QQ, prec)

    return P(2/((1-16*x) + (1-16*x)^(7/8))).list()

A097185_list(30) # G. C. Greubel, Sep 17 2019

CROSSREFS

Cf. A097181, A097182.

Sequence in context: A286722 A250418 A231411 * A178299 A097582 A057007

Adjacent sequences:  A097182 A097183 A097184 * A097186 A097187 A097188

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 20:04 EDT 2021. Contains 348289 sequences. (Running on oeis4.)